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Editorial Introduction

Since their inception in 1990, the FOGA (Foundations of Genetic Algorithms)
workshops have been one of the principal reference sources for theoretical devel-
opments in evolutionary computation (EC) and, in particular, genetic algorithms
(GAs). The ninth such workshop, FOGA IX, was held at the Instituto de Cien-
cias Nucleares of the Universidad Nacional Autónoma de México, Mexico City
during January 8–11, 2007.

One of the main reasons the FOGA series of conferences has had a large
impact in EC has been its distinct profile as the only conference dedicated to
theoretical issues of a “foundational” nature – both conceptual and technical. In
this FOGA conference, and in keeping with this tradition, special attention was
paid to the biological foundations of EC. The essential mathematical structure
behind many evolutionary algorithms is the one familiar from population genet-
ics, whose basic elements have been around now for at least 70 years. The last
20 years or so, however, have witnessed huge changes in our understanding of
how genomes and other genetic structures work due to a plethora of new exper-
imental techniques and results. How does this new phenomenology change our
understanding of what genetic systems do and how they do it? And how can we
design “better” ones?

In this spirit, the first 2 days of the conference consisted of organized discus-
sions built around sets of lectures given by two world authorities on the “old”
biology and the “new” biology – Reinhard Burger (University of Vienna) and
Jim Shapiro (University of Chicago). The motivation behind this was that by
a careful presentation of the main ideas, a useful transfer of knowledge of the
latest developments and understanding of genetic dynamics in biology would be
fruitful for the EC community in better understanding and designing artificial
genetic systems. In particular the following questions were addressed:

– How do real genetic systems work?
– Why do they work that way?
– From this, what can we learn in order to design “better” artificial genetic

systems?

One of the most important conclusions from this confrontation between the
old and the new, was that the genotype – phenotype map and the huge variety
of complex ways by which genomes can interchange and mix genetic material
are not represented adequately in the standard “selection on a fixed fitness land-
scape, mutation and homologous recombination” picture so dominant in EC
and, particularly, GAs. Secondly, it became clear that the canonical picture of
population genetics was not an appropriate framework for considering “macro-
evolution” over long time scales, where the restructuring of genomes can be
enormous. Both these facts potentially pose great challenges for EC. For in-
stance, under what circumstances are all the diverse exchange and restructuring
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mechanisms for genomes useful in an EC setting? It is hard to imagine that
optimizing the 3,456-city Travelling Salesman problem needs such sophisticated
apparatus. Such a limited combinatorial optimization context is probably much
more akin to the evolution of specific phenotypic characteristics, as treated in
standard population genetics. No doubt that is one of the main reasons for the
success of GAs in combinatorial optimization. However, it is not clear if such a
paradigm is adequate for producing a more intelligent robot.

To understand then why biology uses certain representations and operators, it
is necessary to understand what a biological system has to “do” when compared
with EC systems. Surviving in an uncertain, time-dependent environment is
surely an infinitely more complex task than finding a set of allele values that
represent an optimal solution to a combinatorial optimization problem. In this
sense, one may wonder if there are any biological systems that are at least similar
to typical problems faced in EC. Peter Stadler presented probably one of the
closest analogies – evolution of macromolecules in the context of an RNA world
– where the fitness function for a particular RNA configuration is its replication
rate. However, such simple chemical evolution seems far removed from the macro-
evolution of entire organisms. Hopefully, some of the fruits of this more intense
examination of the relationship between biological evolution and EC will appear
in the next FOGA.

The second two days of the conference were of a more standard FOGA format
with contributed talks and ample time for discussion between them. For this
workshop there were 22 submissions which were each sent in a double-blind
review to three referees. Twelve high quality submissions that cover a wide range
of theoretical topics were eventually accepted after two more rounds of revisions
and are presented in this volume.

We would like to thank our co-organizers, Peter Stadler and Darrell Whitley,
for their efforts and input. Katya Rodŕıguez formed part of the Local Organizing
Committee and played an important role in making the conference run smoothly,
as did Trinidad Ramı́rez and various student helpers. Thanks go to the Instituto
de Ciencias Nucleares for providing its facilities and to the Macroproyecto Tec-
nologias para la Universidad de la Información y de la Computación for financial
and technical support.

April 2007 Christopher R. Stephens
Marc Toussaint
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Inbreeding Properties of Geometric Crossover

and Non-geometric Recombinations

Alberto Moraglio and Riccardo Poli

Department of Computer Science, University of Essex, UK
{amoragn,rpoli}@essex.ac.uk

Abstract. Geometric crossover is a representation-independent general-
ization of traditional crossover for binary strings. It is defined in a simple
geometric way by using the distance associated with the search space.
Many interesting recombination operators for the most frequently used
representations are geometric crossovers under some suitable distance.
Showing that a given recombination operator is a geometric crossover
requires finding a distance for which offspring are in the metric segment
between parents. However, proving that a recombination operator is not
a geometric crossover requires excluding that one such distance exists.
It is, therefore, very difficult to draw a clear-cut line between geometric
crossovers and non-geometric crossovers. In this paper we develop some
theoretical tools to solve this problem and we prove that some well-known
operators are not geometric. Finally, we discuss the implications of these
results.

1 Introduction

A fitness landscape [23] can be visualised as the plot of a function resembling a
geographic landscape, when the problem representation is a real vector. When
dealing with binary strings and other more complicated combinatorial objects,
e.g., permutations, however, the fitness landscape is better represented as a
height function over the nodes of a simple graph [19], where nodes represent
locations (solutions), and edges represent the relation of direct neighbourhood
between solutions.

An abstraction of the notion of landscape encompassing all the previous cases
is possible. The solution space is seen as a metric space and the landscape as a
height function over the metric space [1]. A metric space is a set endowed with
a notion of distance between elements fulfilling few axioms [3]. Specific spaces
have specific distances that fulfil the metric axioms. The ordinary notion of dis-
tance associated with real vectors is the Euclidean distance, though there are
other options, e.g., Minkowski distances. The distance associated to combinato-
rial objects is normally the length of the shortest path between two nodes in the
associated neighbourhood graph [4]. For binary strings, this corresponds to the
Hamming distance.

In general, there may be more than one neighbourhood graph associated to
the same representation, simply because there can be more than one meaningful

C.R. Stephens et al. (Eds.): FOGA 2007, LNCS 4436, pp. 1–14, 2007.
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2 A. Moraglio and R. Poli

notion of syntactic similarity applicable to that representation [10]. For example,
in the case of permutations, the adjacent element swap distance and the block
reversal distance are equally natural notions of distance. Different notions of
similarity are possible because the same permutation (genotype) can be used to
represent different types of solutions (phenotypes). For example, permutations
can represent solutions of a problem where relative order is important. However,
they can also be used to represent tours, where the adjacency relationship among
elements is what matters [21].

The notion of fitness landscape is useful if the search operators employed
are connected or matched with the landscape: the stronger the connection the
more landscape properties mirror search properties. Therefore, the landscape
can be seen as a function of the search operator employed [5]. Whereas mutation
is intuitively associated with the neighbourhood structure of the search space,
crossover stretches the notion of landscape leading to search spaces defined over
complicated topological structures [5].

Geometric crossover and geometric mutation [9] are representation-
independent search operators that generalise by abstraction many pre-existing
search operators for the main representations used in EAs, such as binary strings,
real vectors, permutations and syntactic trees. They are defined in geometric
terms using the notions of line segment and ball. These notions and the cor-
responding genetic operators are well-defined once a notion of distance in the
search space is defined. This way of defining search operators as function of the
search space is the opposite to the standard approach in which the search space
is seen as a function of the search operators employed. Our new point of view
greatly simplifies the relationship between search operators and fitness landscape
and allows different search operators to share the same search space.

The reminder of this paper is organized as follows. In section 2, we introduce
the geometric framework. In section 3, we show that the definition of geometric
crossover can be cast in two equivalent, but conceptually very different, forms:
functional and existential. When proving geometricity the existential form is the
relevant one. We use this form also to show why proving non-geometricity of
an operator looks impossible. In section 4, we develop some general tools to
prove non-geometricity of recombination operators. In section 5, we prove that
three recombination operators for vectors of reals, permutations and syntactic
trees representations are not geometric. Importantly this implies that there are
two non-empty representation-independent classes of recombination operators:
geometric crossovers and non-geometric crossovers. In section 6, we draw some
conclusions and present future work.

2 Geometric Framework

2.1 Geometric Preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [9]. For more details on these definitions see [4].
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The terms distance and metric denote any real valued function that conforms
to the axioms of identity, symmetry and triangular inequality. A simple con-
nected graph is naturally associated to a metric space via its path metric: the
distance between two nodes in the graph is the length of a shortest path between
the nodes. Distances arising from graphs via their path metric are called graphic
distances. Similarly, an edge-weighted graph with strictly positive weights is nat-
urally associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is a set of the form Bd(x; r) = {y ∈
S|d(x, y) ≤ r} where x ∈ S and r is a positive real number called the radius of
the ball. A line segment (or closed interval) is a set of the form [x; y]d = {z ∈
S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called extremes of the segment.
Metric ball and metric segment generalize the familiar notions of ball and seg-
ment in the Euclidean space to any metric space through distance redefinition.
These generalized objects look quite different under different metrics. Notice
that the notions of metric segment and shortest path connecting its extremes
(geodesic) do not coincide as it happens in the specific case of an Euclidean space.
In general, there may be more than one geodesic connecting two extremes; the
metric segment is the union of all geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (S, d) is therefore a solution space (or search space) and
L = (M, g) is the corresponding fitness landscape where g : S → R is the fitness
function. Notice that in principle d could be arbitrary and need not have any
particular connection or affinity with the search problem at hand.

2.2 Geometric Crossover Definition

The following definitions are representation-independent and, therefore,
crossover is well-defined for any representation. Being based on the notion of
metric segment, crossover is only function of the metric d associated with the
search space.

A recombination operator OP takes parents p1, p2 and produces one offspring
c according to a given conditional probability distribution:

Pr{OP (p1, p2) = c} = Pr{OP = c|P1 = p1, P2 = p2} = fOP (c|p1, p2)

Definition 1 (Image set). The image set Im[OP (p1, p2)] of a genetic operator
OP is the set of all possible offspring produced by OP with non-zero probability
when parents are p1 and p2.

Definition 2 (Geometric crossover). A recombination operator CX is a geo-
metric crossover under the metric d if all offspring are in the segment between
its parents: ∀p1, p2 ∈ S : Im[CX(p1, p2)] ⊆ [p1, p2]d

Definition 3 (Uniform geometric crossover). The uniform geometric crossover
UX under d is a geometric crossover under d where all z laying between parents
x and y have the same probability of being the offspring:
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∀x, y ∈ S : fUX(z|x, y) =
δ(z ∈ [x; y]d)
|[x; y]d|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y]d

where δ is a function that returns 1 if the argument is true, 0 otherwise.

A number of general properties for geometric crossover and mutation have been
derived in [9].

2.3 Notable Geometric Crossovers

For vectors of reals, various types of blend or line crossovers, box recombinations,
and discrete recombinations are geometric crossovers [9]. For binary and mul-
tary strings (fixed-length strings based on a n symbols alphabet), all mask-based
crossovers (one point, two points, n-points, uniform) are geometric crossovers
[9,13]. For permutations, PMX, Cycle crossover, merge crossover and others
are geometric crossovers [10,11]. For Syntactic trees, the family of Homologous
crossovers (one-point, uniform crossover) are geometric crossovers [12]. Recom-
binations for other more complicated representations such as variable length
sequences, graphs, permutations with repetitions, circular permutations, sets,
multisets partitions are geometric crossovers [15,9,10,14].

2.4 Geometric Crossover Landscape

Since our geometric operators are representation-independent, one might wonder
as to the usefulness of the notion of geometricity and geometric crossovers in
practical applications. To see this, it is important to understand the difference
between problem and landscape.

Geometric operators are defined as functions of the distance associated to
the search space. However, the search space does not come with the problem
itself. The problem consists only of a fitness function to optimize, that defines
what a solution is and how to evaluate it, but it does not give any structure over
the solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So, for each problem,
there is one fitness function but as many fitness landscapes as the number of
possible different structures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely independently from
the problem at hand. However, because the search operators are defined over
such a structure, doing so would make them decoupled from the problem, hence
turning the search into something very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. That is, the landscape can be seen as a knowledge interface between
algorithm and problem [10]. In [10] we discussed three heuristics to design the
connectivity of the landscape in such a way to aid the evolutionary search per-
formed by geometric crossover. These are: i) pick a crossover associated to a
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good mutation, ii) build a crossover using a neighbourhood structure based on
the small-move/small-fitness-change principle, and iii) build a crossover using a
distance that is relevant for the solution interpretation.

Once the connectivity of the landscape is correctly designed, problem knowl-
edge can be exploited by search operators to perform better than random search,
even if the search operators are problem-independent (as in the case of geometric
crossover and mutation). Indeed, by using these heuristics, we have designed very
effective geometric crossovers for N-queens problem [11], TSP [11] [10], Job Shop
Scheduling [11], Protein Motifs discovery [20], Graph Partitioning [6], Sudoku
[16] and Finite State Machines [7].

3 Interpretations of the Definition of Geometric
Crossover

In section 2, we have defined geometric crossover as function of the distance d
of the search space. In this section we take a closer look at the meaning of this
definition when the distance d is not known. We identify three fundamentally
different interpretations of the definition of geometric crossover. Interestingly
it will become evident that there is an inherent element of self-reference in the
definition. We show that proving that a recombination operator is non-geometric
may be impossible.

3.1 Functional Interpretation

Geometric crossover is function of a generic distance. If one considers a spe-
cific distance one can obtain a specific geometric crossover for that distance
by functional application of the definition of geometric crossover to this dis-
tance. This approach is particularly useful when the specific distance is firmly
rooted in a solution representation (e.g., edit distances). In this case, in fact,
the specification of the definition of geometric crossover to the distance acts as a
formal recipe that indicates how to manipulate the syntax of the representation
to produce offspring from parents. This is a general and powerful way to get
new geometric crossover for any type of solution representation. For example,
given the Hamming distance on binary string by functional application of the
definition of geometric crossover we obtain the family of mask-based crossover
for binary strings. In particular, by functional application of the definition of
uniform geometric crossover one obtains the traditional uniform crossover for
binary strings.

3.2 Abstract Interpretation

The second use of the definition of geometric crossover does not require to specify
any distance. In fact we do apply the definition of geometric crossover to a
generic distance. Since the distance is a metric that is a mathematical object
defined axiomatically, the definition of geometric crossover becomes an axiomatic
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object as well. This way of looking at the definition of geometric crossover is
particularly useful when one is interested in deriving general theoretical results
that hold for geometric crossover under any specific metric. We will use this
abstract interpretation in section 4 to prove the inbreeding properties that are
common to all geometric crossovers.

3.3 Existential Interpretation

The third way of looking at the definition of geometric crossover becomes appar-
ent when the distance d is not known and we want to find it. This happens when
we want to know whether a recombination operator RX , defined operationally as
some syntactic manipulation on a specific representation, is a geometric crossover
and for what distance. This question hides an element of self-reference of the def-
inition of geometric crossover. In fact what we are actually asking is: given that
the geometric crossover is defined over the metric space it induces by manipu-
lating the candidate solutions, what is such a metric space for RX if any?

The self-reference arises from the fact that the definition of geometric crossover
applies at two distinct levels at the same time: (a) at a representation level,
as a manipulation of candidate solutions, and (b) at a geometric level, on the
underlying metric space based on a geometric relation between points. This
highlights the inherent duality between these two worlds: they are based on the
same search space seen from opposite viewpoints, from the representation side
and from the metric side.

Self-referential statements can lead to paradoxes. Since the relation between
geometric crossover and search space is what ultimately gives it all its advan-
tages, it is of fundamental importance to make sure that this relation sits on a
firm ground. So, it is important to show that the definition of geometric crossover
does not lead to any paradox. We show in the following that the element of self-
reference can be removed and the definition of geometric crossover can be cast
in existential terms making it paradox-free.

A non-functional definition of geometric crossover is the following: a recom-
bination operator RX is a geometric crossover if the induced search space is
a metric space on which RX can be defined as geometric crossover using the
functional definition of geometric crossover. This is a self-referential definition.
If a recombination operator does not induce any metric space on which it can
be defined as geometric crossover, then it is a non-geometric crossover.

We can remove the element of self-reference from the previous definition and
cast it in an existential form: a recombination RX is a geometric crossover if
for any choice of the parents all the offspring are in the metric segment between
them for some metric.

The existential definition is equivalent to the self-referential definition be-
cause if such a metric exists the operator RX can be defined as geometric
crossover on such a space. On the other hand, if an operator is defined on a
metric space as geometric crossover in a functional form, such a space exists by
hypothesis and offspring are in the segment between parents under this metric by
definition.
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3.4 Geometric Crossover Classes

The functional definition of geometric crossover induces a natural existential
classification of all recombination operators into two classes of operators:

– geometric crossover class G: a recombination OP belongs to this class if there
exists at least a distance d under which such a recombination is geometric:
OP ∈ G ⇐⇒ ∃d : ∀p1, p2 ∈ S : Im[OP (p1, p2)] ⊆ [p1, p2]d.

– non-geometric crossover class Ḡ: a recombination OP belongs to Ḡ if there is
no distance d under which such a recombination is geometric: OP ∈ Ḡ ⇐⇒
∀d : ∃p1, p2 ∈ S : Im[OP (p1, p2)] \ [p1, p2]d 
= ∅.

For this classification to be meaningful we need these two classes to be non-
empty. In previous work we proved that a number of recombination operators
are geometric crossovers so G is not empty. What about Ḡ? To prove that this
class is not empty we have to prove that at least one recombination operator is
non-geometric. However, as we illustrate below this is not easy to do.

Let us first illustrate how one can prove that a recombination operator RX
is in G. We will use the self-referential definition of geometric crossover. The
procedure is the following: guess a candidate distance d, then prove that all
offspring of all possible pairs of parents are in the metric segment associated
with d. If this is true then the recombination RX is geometric crossover under
the distance d because the operator RX can be defined as a geometric crossover
on this space. If the distribution of the offspring in the metric segments under
d is uniform, RX is the uniform geometric crossover for the metric d because
the operator RX can be defined as the (unique) geometric uniform crossover
on this space. If one finds that some offspring are not in the metric segment
between parents under the initially guessed distance d then the operator RX
cannot be defined as geometric crossover over this space. However, this does not
imply RX ∈ Ḡ because there may exist another metric d′ that fits RX and
makes it definable as a geometric crossover on d′. So, one has to guess a new
candidate distance for RX and start all over again until a suitable distance is
found.

Although we developed some heuristics for the selection of a candidate dis-
tance, in general proving that a recombination operator is geometric may be
quite hard (see for example [12] where we considered homologous crossover for
GP trees). Nonetheless, the approach works and, in previous work, we proved
that a number of recombination operators for the most frequently used repre-
sentations are geometric crossover under suitable distances.

It is evident, however, that the procedure just described cannot be used to
prove that a given recombination operator RX is non-geometric. This is because
we would need to test and exclude all possible distances, which are infinitely
many, before being certain that RX is not geometric. Clearly, this is not possible.

In the next section we build some theoretical tools based on the abstract
interpretation of the definition of geometric crossover to prove non-geometricity
in a more straightforward way.
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4 Inbreeding Properties of Geometric Crossover

How could we actually prove non-geometricity? From the definition of geomet-
ric crossover based on a generic notion of distance (abstract interpretation, see
section 3.2), we could derive metric properties that are common to the class of
all geometric crossovers and that could be tested without making explicit use of
the distance.

Any reference to the distance needs necessarily to be excluded from these
properties because what in fact we need to test is the existence of an underlying
distance behind a given recombination operator hence we cannot assume the
existence of one a priori. So the first requirement is that these properties derive
from the metric axioms but cannot be about distance. A second requirement
is generality: these properties need to be representation-independent so that
recombination for any solution representation can be tested. A third and last
requirement is that these properties need to be independent from the specific
probability distribution with which offspring are drawn from the segment be-
tween the parents. In particular they must encompass also geometric crossovers
where offspring are drawn from only part of the segment.

If necessary properties satisfying these requirements existed, testing a recom-
bination operator for non-geometricity would become straightforward: if such
operator does not have a property common to all geometric crossovers it is au-
tomatically non-geometric. Fortunately, properties of this type do exists. They
are the inbreeding properties of geometric crossover.

In the following we introduce three fundamental properties of geometric
crossover arising only from its axiomatic definition (metric axioms), hence valid
for any distance, any probability distribution and any underlying solution rep-
resentation. These properties of geometric crossover are simple properties of
geometric interval spaces [22] adapted to the geometric crossover. The proper-
ties proposed are based on inbreeding (breeding between close relatives) using
geometric crossover and avoid explicit reference to the solution representation.
In section 5, we will make good use of these properties to prove some non-
geometricity results.

Theorem 1 (Property of Purity). If the operator RX is geometric then the
recombination of one parent with itself can only produce the parent itself.

Proof: If RX is geometric there exists a metric d such that any offspring o be-
longs to the segment between parents s1, s2 under metric d: d(s1, o)+ d(o, s2) =
d(s1, s2). When the parents coincide, s = s1 = s2, we have: d(s, o) + d(o, s) =
d(s, s) hence for symmetry and identity axioms of metric d(s, o) = 0 for any met-
ric. For the identity axiom this implies o = s. �

Inbreeding diagram of the property of purity (see Fig. 1(a)): when the two par-
ents are the same P1, their child C must be P1.

Theorem 2. (Property of Convergence) If the operator RX is geometric then
the recombination of one parent with one offspring cannot produce the other
parent of that offspring unless the offspring and the second parent coincide.
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Fig. 1. Inbreeding diagrams

Proof: If RX is geometric there exists a metric d such that for any offspring o
of parents s1 and s2 we have d(s1, o) + d(o, s2) = d(s1, s2). If one can produce
parent s2 by recombining s1 and o, it must be also true that d(s1, o) = d(s1, s2)+
d(s2, o). By substituting this last expression in the former one we have: d(s1, s2)+
d(s2, o) + d(o, s2) = d(s1, s2), which implies d(o, s2) = 0 and s2 = o for any
metric. �

Inbreeding diagram of the property of convergence (see Fig. 1(b)): two parents
P1 and P2 produce the child C. We consider a C that does not coincide with P1.
The child C and its parent P2 mate and produce a grandchild G. The property
of convergence states that G can never coincide with P1.

Theorem 3. (Property of Partition) If the operator RX is geometric and c is
a child of a and b, then the recombination of a with c and the recombination of
b with c cannot produce a common grandchild e other than c.

Proof: We have that c ∈ [a, b], e ∈ [a, c] and e ∈ [b, c], from which it follows that
d(a, c) + d(c, b) = d(a, b), d(a, e) + d(e, c) = d(a, c) and d(b, e) + d(e, c) = d(b, c).
Substituting the last two expressions in the first one we obtain:

d(a, e) + d(e, c) + d(b, e) + d(e, c) = d(a, b)
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Notice that d(a, e) + d(b, e) ≥ d(a, b) and, so, the previous equation implies
d(e, c) = 0 and e = c. �

Inbreeding diagram of the property of partition (see Fig. 1(c)): two parents P1
and P2 produce the child C. The child C mates with both its parents, P1 and
P2, producing grandchildren G1 and G2, respectively. We consider the case in
which at least one grandchildren is different from C. The property of partition
states that G1 and G2 can never coincide.

Geometric crossovers whose offspring cover completely the segments between
their parents (complete geometric crossovers) have a larger set of properties
including extensiveness (a, b ∈ Im(UX(a, b))) and symmetry (Im(UX(a, b)) =
Im(UX(b, a))), which however, are not common to all geometric crossovers.

4.1 Relation with Forma Analysis

Since the inbreeding properties of geometric crossover are related with forma
analysis [18] we briefly explain this relation.

Radcliffe developed a theory [18] of recombination operators starting from the
notion of forma that is a representation-independent generalization of schema. A
forma is an equivalence class on the space of chromosomes induced by a certain
equivalence relation. Radcliffe describes a number of important formal desirable
properties that a recombination operator should respect to be a good recombina-
tion operator. These properties are representation-independent and are stated as
requirements on how formae should be manipulated by recombination operators.

Geometric crossover, on the other hand, is formally defined geometrically
using the distance associated with the search space. Unlike Radcliffe’s properties,
the inbreeding properties of geometric crossover are not desired properties but
are properties that are common to all geometric crossovers and derive logically
from its formal definition only.

It is important to highlight that geometric crossover theory and forma anal-
ysis overlap but they are not isomorphic. This becomes clear when we consider
what schemata for geometric crossover are. In forma theory, the recombination
operators introduced by Radcliffe “respect” formae: offspring must belong to
the same formae both parents belong to. A natural generalization of schemata
for geometric crossover in this sense are (metric) convex sets: offspring in the
line segment between parents belong to all convex sets common to their par-
ents. So geometric crossover induces a convexity structure over the search space.
A convexity structure is not the same thing as an equivalence relation: con-
vex sets, like equivalence classes, cover the entire space but unlike them convex
sets do not partition the search space because they overlap. Interestingly, con-
vex sets seen as schemata naturally unify the notions of inheritance and fitness
landscape.

A further advantage of geometric crossover over forma theory is that whereas
it is rather easy to define and deal with distances for complex representations
such as trees and graphs (using edit distances) it is much harder to use equiva-
lence classes.
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5 Non-geometric Crossovers

In the following we use the properties of purity, convergence and partition to
prove the non-geometricity of three important recombination operators: ex-
tended line recombination, Koza’s subtree swap crossover and Davis’s Order
Crossover (see, for example, [2] for a description of these operators).

Theorem 4. Extended line recombination is not a geometric crossover.

Proof: The convergence property fails to hold. Let p1 and p2 be two parents, and
o the offspring lying in the extension line beyond p1. It is easy to see that using
the extension line recombination on o and p2, one can obtain p1 as offspring. �

Theorem 5. Koza’s subtree swap crossover is not a geometric crossover.

Proof: The property of purity fails to hold. Subtree swap crossover applied to
two copies of the same parent may produce offspring trees different from it. �

Theorem 6. Davis’s Order Crossover is non-geometric.

Proof: The convergence property does not hold in the counterexample in Figure 2
where the last offspring coincides with parent 2. �
What are the implications of knowing that these operators are not geometric?
The first one is that one is not tempted to try to prove its geometricity with yet
another distance.

A second immediate and fundamental consequence of knowing that an op-
erator is non-geometric is that since it is not associable with any metric it is

Parent 1 : 12.34.567

Parent 2 : 34.56.127

Section : --.34.---

Available elements in order: 12756

Offspring: 65.34.127

Parent 3 := Offspring

Parent 3 : 6534.12.7

Parent 1 : 1234.56.7

Section : ----.12.-

Available elements in order: 73456

Offspring: 3456.12.7

Offspring = Parent 2

Fig. 2. Counterexample to the geometricity of order crossover
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not associable with any simple fitness landscape defined as a height function on
a metric space in a simple way. This is bad news for non-geometric crossovers
because the alternative to a simple fitness landscape with a simple geometric
interpretation is a complex topological landscape with hardly any interpretation
for what is really going on.

This leads us to a third very important practical consequence. Just know-
ing that a recombination operator is geometric or non-geometric cannot tell
us anything about its performance. The no free lunch theorem rules. However,
as a rule-of-thumb we know that when the fitness landscape associated with
a geometric crossover is smooth, the geometric crossover associated with it is
likely to perform well. This is fundamental for crossover design because the de-
signer studying the objective function can identify a metric for the problem at
hand that gives rise to a smooth fitness landscape and then he/she can pick
the geometric crossover associated with this metric. This is a good way to em-
bed problem knowledge in the search. However, since this strategy is inherently
linked to the existence of a distance function associated with a recombination
operator, non-geometric crossovers cannot make use of it.

5.1 Possibility of a General Theory of Evolutionary Algorithms

The forth and last consequence of the mere existence of some non-geometric
operators is that this implies the existence of two separate classes of operators.
We state this in the following as a theorem.

Theorem 7 (Existence of non-geometric crossover). The class of non-
geometric crossover is not empty. Hence the space of recombination operator
is split into two proper classes: geometric and non-geometric crossover.

This is an important step when developing a theory of geometric crossover be-
cause it allows to meaningfully talk about geometric crossover in general without
the need to specify the distance associated with it. This in turn has a critical
impact on the possibility of a general theory of geometric crossover and of a
programme of unification of evolutionary algorithms.

The main danger of a general theory is being too shallow: would such a general
theory be able to tell us anything meaningful or only trivialities encompassing
all operators could be derived? A theory of all operators is an empty theory
because the performance of an EA derives from how its way of searching the
search space is matched with some properties of the fitness landscape. Without
restricting the class of operators to a proper subset of all possible operators,
there is no common behavior, hence there is no common condition on the fitness
landscape to be found to guarantee better than random search performance. This
is just another way of stating the NFL theorem. So a theory of all operators is
necessarily a theory of random search in disguise. However, since the definition
of geometric crossover does not encompass all operators, it is not futile to pursue
a general theory of geometric crossover.

In previous work we have found that many recombinations used in every-
day practice are geometric. Without being able to prove the existence of some



Inbreeding Properties of Geometric Crossover 13

non-geometric crossovers there are two alternative explanations for this happen-
ing: (a) the geometric crossover definition is a tautology and the theory built on
it a theory of everything hence an empty theory or (b) if there are non-geometric
crossovers, this is hardly a coincidence and the class of geometric crossover in-
deed captured a deep aspect of the class of “real-word” recombinations.

Theorem 7 is therefore foundational because it implies that the true expla-
nation is (b). Therefore, a general theory of geometric crossover makes sense
because it is not a theory of random search in disguise and the program of ge-
ometric unification of evolutionary algorithms makes sense because it is not a
mere tautology.

6 Conclusions and Future Work

In this paper we have shown that the abstract definition of geometric crossover
induces two non-empty representation-independent classes of recombination op-
erators: geometric crossovers and non-geometric crossovers. This is a fundamen-
tal result that put a programme of unification of evolutionary algorithms and a
general representation-independent theory of recombination operators on a firm
ground.

Because of the peculiarity of the definition of geometric crossover, proving
non-geometricity of a recombination operator, hence the existence of the non-
geometric crossover class, is a task that at first looks impossible. This is because
one needs to show that the recombination considered is not geometric under any
distance. However taking advantage of the different possible ways of looking at
the definition of geometric crossover we have been able to develop some theo-
retical tools to prove non-geometricity in a straightforward way. We have then
used these tools to prove the non-geometricity of three well-known operators for
real vectors, permutations, and syntactic trees representations.

In future work, we will start constructing a general theory of evolutionary
algorithms based on the abstract interpretation of the definition of geometric
crossover. So this theory will be able to describe the generic behavior of all
evolutionary algorithms equipped with a generic geometric crossover. We antic-
ipate that this is a form of convex search. The next step will be to understand
for what general class of fitness landscape this way of searching delivers good
performance.
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Abstract. Using an exact coarse-grained formulation of the dynamics
of a GA we investigate in the context of a tunable family of “modular”
fitness landscapes under what circumstances one would expect recombi-
nation to be “useful”. We show that this depends not only on the fitness
landscape and the state of the population but also on the particular
crossover mask under consideration. We conclude that rather than ask
when recombination is useful or not one needs to ask - what crossover
masks are useful. We show that the answer to this is when the natural
“building blocks” of the landscape are compatible with the “building
blocks” defined by the crossover mask.

1 Introduction

Recombination has for many been the key operator which distinguishes many
Evolutionary Algorithms (EAs), such as GAs, from other classes of heuristic,
the idea being that recombination takes fit “partial” solutions from one sec-
tion of the population and recombines them with fit “partial” solutions from
another section to form more “complete” solutions. This thinking has been en-
capsulated in Holland’s Schema theorem (HST) [1] and the associated Building
Block Hypothesis (BBH) [2], where a “partial” solution is formulated in terms of
the concept of a schema, the conclusion being that a GA finds optimal, or near
optimal, strings by recombining fit, short low-order schemata, the short being
deduced from analysing only the destructive effects of crossover.

This intuitive framework as to how recombinative EAs work has had two chief
drawbacks: firstly, that exact microscopic models [3] seemed to give no evidence
at all that schemata or “building blocks” naturally emerged as a preferred de-
scription of the dynamics. On the contrary, such models have been used to argue
against the utility of these concepts; and secondly, that attempts to design fit-
ness landscapes where recombinative EAs manifestly performed better than non-
recombinative ones, have had, at best, ambiguous results. The most well known
example of this are the “Royal Road” functions [4], [5], where “building blocks”
were deliberately built into the construction of the landscape. More recently in
[6] real-valued analogs of the Royal Road function were used as examples of land-
scapes where recombination was provably better than mutation. Other contrived
examples have followed, such as the HIFF function [7]. Of course, this begs the
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question of the utility of recombination if it is so difficult to find landscapes that
favour it. One may also ask why is it then so ubiquitous in nature?

Although, exact, string-based models gave no hint of when or where recom-
bination may be useful, later “coarse-grained” [8,9] models showed how in re-
combinative EAs the concept of a schema clearly emerged, schemata being the
natural effective degrees of freedom for describing recombination. What is more,
the very structure of the equations showed rigorously and unambiguously how,
indeed, recombinative EAs build optimal solutions from Building Blocks (BBs)
which in their turn could be constructed from their BBs etc., the hierarchy ter-
minating at the most coarse-grained BBs - one-schemata. Furthermore, the set
of these BBs formed an alternative coordinate basis - the Building Block Basis
(BBB) - for the description of the dynamics. Although the very structure of the
equations showed clearly how recombinative EAs “worked”, in a manner akin
to the intuition if not the mathematics behind the BBH, what the structure
did not show is under what conditions recombination was useful and what BBs
were favoured. Although some early empirical work showed [10] how the BBH
was not generally correct in its conclusion that short blocks are preferred, not
much more has been done beyond qualitative statements about natural metrics
associated with the dynamical equations of recombinative EAs. This is a pity,
as much insight can be gained from the exact coarse-grained equations. So, the
purpose of this paper is to give insight as to when one would expect recombi-
nation to be useful by examining the equations for a recombinative GA in a set
of model landscapes and using a set of model metrics to measure the utility of
recombination.

Although we have extensive results for many different forms of crossover and
many different fitness landscapes, due to space limitations here we will present
results only for one-point crossover and a family of “modular” fitness landscapes.

2 A Short History of “Building Blocks”

HST has been one of the pillars on which much of the theory of GAs has been
based. The notion behind a schema, a marginal in the terminology more familiar
in population genetics, is that, intuitively, as a definite subset of loci of a given
string, it represents a “partial” solution, the potential full solution being repre-
sented by an entire string. For a given string with alleles of cardinality k, there
are (k + 1)N different schemata, a given string being a member of 2N of them.

Mathematically, in one common formulation, HST states that: for a GA
with one-point crossover, proportional selection and point mutation; and for
an arbitrary schema I, of length � and order No, I being a multi-index I =
{i1, i2, . . . , iNo},

〈PI(t + 1)〉 ≥
((

1− pc
(�− 1)
N − 1

))
(1− p)No

f(I)
f̄(t)

PI(t) (1)

where PI(t) is the frequency of the schema I at generation t. The parameters
pc and p are the recombination and mutation rates respectively, while f(I) is
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the schema fitness and f̄(t) the average population fitness. This version of the
Schema theorem is an inequality as it does not take into account the effects of
schema creation.

At least with respect to recombination, the canonical interpretation of equa-
tion (1) is that the longer the schema the less chance it has of being propagated
into the next generation due to schema disruption. Similarly, the effect of muta-
tion has been interpreted so as to favour low-order schemata. Hence, as clearly
the higher the fitness of a schema the more likely it is to propagate, the above
has been formalized in terms of the Building Block Hypothesis

– A GA works by recombining short, low-order, highly fit schemata into even
fitter higher-order schemata

A “building block” in this traditional sense is taken to be a fit, low-order, short
schemata, such that when juxtaposed via recombination with other like schemata
helps find fitter solutions. As indicated above, this characterization of the partic-
ular schemata that should be termed “building blocks” comes from a particular
interpretation of HST – schema disruption leading to the idea of short and
preservation under mutation leading to the idea of low order. However, HST
is incapable of answering how the juxtaposition of these building blocks comes
about, as it does not account for this part of the process. This is a major weak-
ness when considering HST and the BBH as the basis on which to explain how a
GA works. Although, generally accepted in many quarters there have been other
alternative interpretations [11,12] proffered as to how a GA “works”.

Another subtlety concerns the fitness f(I) of a schema or building block. In
(1) this fitness is population dependent, being given by f(I) =

∑
J∈I f(J)PJ (t)/∑

J∈I PJ (t) where the sum is over all strings J that are elements of the schema
I. This dynamic schema fitness must be contrasted [13] with the static schema
fitness fs(I), which can be found from the dynamic one by setting the population
to be random, wherein the PJ (t) cancel. It also needs to be emphasized that the
BBH does not provide a mathematically rigorous characterization of building
blocks. For instance, although we know how many schemata there are, we do
not know how many building blocks there are, as we do not have a precise
definition with which to establish a subset. Just how short does a building block
have to be to be considered such. There are clearly however (k + 1)N potential
building blocks.

A corollary of (1) has been taken to be that it is advantageous to put as
close together as possible bits that must “cooperate”. This is stated so that one
requires to increase the “linkage” between cooperating genes so that there is less
probability of splitting them up during recombination. This notion of linkage is
one that is shared by population genetics and is intimately associated with the
act of recombination. However, the term “linkage” has also been widely used
in the EA community to denote epistatic dependence between genes [14]. In
other words, if the fitness contribution associated with a given locus depends on
another then they are said to be “linked”. Linkage in this sense is associated
with the relation between a fitness value and a representation. For instance, a
separable fitness function can be decomposed into a set of linkage units or blocks
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wherein there is epistasis between loci within a block but not between blocks. It
is important to remember, however, that a block in this sense is not necessarily
the same as a building block as defined by HST and the BBH. Nor, as we will
see in the next section, is it the same as a Building Block which is an element
of the BBB To distinguish them we will refer to a linkage group with mutual
epistasis as a landscape block.

It is then natural to think that a good search procedure should respect a
given landscape block once its optimal configuration has been found. Hence, an
understanding of the linkage patterns associated with a given representation can
help in finding good search algorithms for the problem. Such “linkage learning”
has spawned many different algorithms [14]. Much of this work is associated
with the question of how genes should be best distributed on a string. This is a
question of representation.

Which representation is best however, depends on what genetic operators are
to be used for the search. The BBH, based on HST, would hint that it is better
to use a representation such that linked genes (in the epistatic sense) are placed
close to one another on the string. This would mean that the associated land-
scape blocks are as short as possible. What is at issue from the point of view
of the design of efficient search algorithms is a good compatible choice of repre-
sentation and genetic operators. From the point of view of selecto-recombinative
algorithms this seems to be hinting at the fact that landscape blocks and build-
ing blocks should be as compatible as possible. What can we play with though
to enhance this compatibility? To some extent our freedom is limited.

3 What Do Exact Models Tell Us?

In the previous section we talked about the notion of building block in the
context of HST. As emphasized, this theorem does not tell us about schema
reconstruction. For that, we need an exact model. The model we will consider will
be the canonical GA with selection, mutation and homologous crossover, though
here we will concentrate largely on selection and recombination. Mathematically,
in the string basis, the evolution equation familiar from population genetics or
GAs [3] that relates the expected value of the genotype frequency at generation
t + 1, 〈PI(t + 1)〉, to the actual genotype frequencies at generation t is

〈PI(t + 1)〉 =
∑

J

M J
I

(
(1− pc)P ′

J (t)

+pc

∑
m

pc(m)
∑
K,L

λ KL
J (m)P ′

K(t)P ′
L(t)
)

(2)

where P ′
I is the probability to select I. M J

I is the probability to mutate genotype
I to genotype J and λ JK

I (m) is the conditional probability that the offspring I is
formed given the parents J and K and a recombination mask m, pc(m) being the
conditional probability that the mask m is applied and pc the probability that
crossover is applied in the first place. λ JK

I (m) = 0, 1 as either the offspring is



Just What Are Building Blocks? 19

formed or it isn’t. In the infinite population limit, 〈PI(t)〉→ PI(t) and equation
(2) is a deterministic equation for PI(t).

The first term in (2) arises from mutation of a clone of the string J , while the
second term represents the mutations of string J , where now J arises from all
the ways in which it may be constructed from other strings via recombination.
The explicit form of P ′

I depends on the type of selection used. For proportional
selection, for instance, which we will use here, P ′

I(t) = (f(I)/f̄(t))PI(t).
If one wishes to “explain” how GAs work, in one sense one need look no

further than (2), given that it is an exact equation. However, explain also has
a connotation of understand. It is not sufficient to just numerically integrate it,
even if that were possible for larger values of N . We can however try to use
it to see to what extent the historical explanation of how GAs work in section
(2) is valid. If the intuitive explanation associated with HST and the BBH are
valid, then they should be compatible with the rigorous theory described by (2).
In fact, (2) and its consequences have been used as a stick with which to beat
proponents of HST and the BBH as neither is readily visible in it. Here, string
construction is interpreted as the pure recombination of other strings. There are
no building blocks manifest here. What is more, if one wishes to solve these
equations one must consider that the equation for a single string potentially
depends on all the rest.

However, (2) is written in terms of strings. What happens if one considers
schemata? Might things be simpler? Equation (2) can be coarse grained to yield
an equation for an arbitrary schema, I, that has an identical functional form.
For instance, for one-point crossover

〈PI(t + 1)〉 =
∑

J

M J
I

((
1− pc(�− 1)

(N − 1)

)
P ′

J (t)

+
pc

N − 1

∑
k

∑
K,L

λ KL
J (k)P ′

K(t)P ′
L(t)

⎞⎠ (3)

where the sum over k is over those crossover points within the defining length
of the schema J . The interpretation of the resulting equation is that the first
term arises from mutation of a clone of the schema J , while the second term
represents the mutations of J , where now schema J arises from all the ways in
which it may be constructed via recombination from other schemata of the same
schema partition. By neglecting for the moment the schema reconstruction term
and mutations from other schemata J one obtains (1). Thus, one may recover
HST. The question remains however, are building blocks really used and if so
how are they recombined? Any answer has to lie in the construction terms of (2)
and (3). However, as in the case of strings these just say that schemata are mixed
together by recombination to form other schemata. If one wants to understand
how a particular schema arises one must consider all other schemata on the par-
tition. Furthermore, how would one naturally obtain information about strings
once one has passed to a description such as this in terms of schemata? Of course,
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one can reasonably surmise that the strings/schemata that are mixed should be
fit, as they appear in factors P ′

K and P ′
L, but what about short or low order?

The answer to these questions can be more easily attacked by passing to a
different representation of (2). This is found by noting that the string recon-
struction term itself can be naturally written in terms of schemata. This can be
achieved in two different but equivalent ways, one by a direct coarse graining
of the construction term [8], or secondly, via a coordinate transformation [15]

implemented by a coordinate transformation matrix Λ1 ≡
(

1 1
0 1

)⊗N

where ⊗N

signifies the N -fold tensor product of the matrix1. In the absence of mutation
(for clarity) one finds

〈PI(t + 1)〉 = P ′
I(t)− pc

∑
m

pc(m)ΔI(m, t) (4)

where
ΔI(m, t) = (P ′

I(t)− P ′
Im

(t)P ′
Im̄

(t)) (5)

is the selection-weighted linkage disequilibrium coefficient [8]. In this represen-
tation Im and Im̄ are conjugate schemata, i.e., Im̄ is the bit complement of Im

in the string I. For example, ∗1 is the conjugate of 1∗ in the string 11. P ′
Im

(t) is
the probability to select the schema Im and P ′

Im̄
(t) that of the conjugate schema

Im̄. For example, for N = 3, if the optimal string is I = 111 and the mask is
011, 0/1 signifying take the corresponding bit from the first/second “parent”,
then the schema defined by the mask is Im = 1 ∗ ∗ (just replace mask 0s by *s
in the schema). As m̄ = 100, then the conjugate schema is Im̄ = ∗11, such that
I = Im ∪ Im̄. Hence, Δ111(011, t) = P ′

111(t)− P ′
1∗∗(t)P ′∗11(t).

The most noteworthy thing about (4) compared to (2) is that string recon-
struction is now seen to proceed via the recombination of schemata, string I
being formed by recombining the schemata Im and Im̄, which indeed in a very
real sense are now the “building blocks” of the string I. However, in order to
understand the dynamics of I we have to know in turn the dynamics of Im and
Im̄. The equations for these have the same functional form as (4). The recon-
struction term for the schema Im, for instance, now involves two other conjugate
schemata Imm′ and Imm̄′ . For example, for I = 11∗ and m′ = 010 or 011 then
Im′ = 1 ∗ ∗ and Im̄′ = ∗1∗. Thus, we see that the building blocks of I in turn
have their own building blocks, which are of lower order than Im, which in its
turn is of lower order than I.

Inherent in (4) then is an important element of the BBH - that a GA builds so-
lutions by recombining lower order partial solutions. What we cannot naively con-
clude is that these partial solutions are fit, short or low-order. However, what the
equation does show is that for a selecto-recombinative GA, if a string is not present

1 In this basis the sums over K and L can be dispensed with, as the three-index object
λ KL

J (m) is skew-diagonal on the indices K and L, coupling only the two schemata,
Im and Im̄, that contribute to the string I . Moreover, for a given mask, there is one
and only one corresponding schema combination that yields the string I .
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in the population, then the only way to find it is by recombining its component
schemata and, further, that the only way that these component schemata can be
found, if they arenot alreadypresent, is by recombining their own lower-ordercom-
ponent schemata. For a given string, there is a unique set of 2N definite schemata
that canbe potentiallyused by recombination to reconstruct it. What is more these
schemata form a basis set with which the dynamics of any other string may be de-
duced. For these reasons we denote these schemata Building Block schemata.2 Of
course, there is a corresponding BBB for any given string. They all form equiv-
alent bases. Naturally, a very important one is that associated with the optimal
string, for which the corresponding BBB gives the unique set of schemata that po-
tentially can be recombined to obtain it. If our interest is in the optimal string,
then (4) tells us that instead of the (k + 1)N potential building blocks (remember
no capitals!) only 2N can possibly contribute to the dynamics of the optimal string.
Furthermore, as we shall see, this set of interest may be further reduced in size after
considering the particular recombination distribution used.

The importance of ΔI(m, t) is that it offers a complete description of the util-
ity of recombination, mask by mask and generation by generation. For instance,
if ΔI(m, t) < 0, then recombination using the mask m produces more strings
of type I in the next generation than selection alone. Similarly, if ΔI(m, t) > 0
the contrary is true. Clearly ΔI depends on the fitness landscape and the actual
state of the population. However, it also depends explicitly on the mask, which
means that in evaluating the effects of recombination it is necessary to consider
it mask by mask, as potentially one mask may be advantageous while another
is disadvantageous.

3.1 The Landscapes

As the results of recombination and selection are sensitive to the fitness land-
scape chosen one has to focus on a subset of possible landscapes that illustrate
important relationships between the two. Here, we will focus on a class of “mod-
ular” landscapes of the following type:

fI =
M∑

α=1

fIα

where the string is divided up into M consecutive, contiguous landscape blocks,
fIα being the fitness of block α, α ∈ [1, M ]. It remains to specify the fitness
distribution within a block. We will take the landscape to be uniform, in that each
block has the same landscape and will principally consider the block-landscape
to be needle-in-a-haystack (NIAH)3. Thus,

fIα = f1 Iα = needle (6)
= f0 Iα = hay (7)

2 We capitalize “building block” now as in this case they have a mathematically rigorous
foundation, forming an alternative coordinate basis - the Building Block basis (BBB)
[15] - for the description of the dynamics.

3 We have tried other landscapes, such as a deceptive landscape, with similar results.
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This class of landscapes is clearly “tunable” in its modularity through M : M = 1
being just the standard NIAH landscape, while for M = N it leads to a unitation
landscape, being counting ones for f1 = 1, f0 = 0. Generally we will take for
each block the optimal block configuration to be all 1s and the needle to have
fitness 2, and the hay fitness 1. If f0 = 0 for M 
= N it is the “Royal Road”
function. If the landscape within each block is the N/M -bit deceptive landscape,
then the whole landscape becomes the concatenated-trap function with m traps.

Although the modularity we have for simplicity chosen here is “absolute”,
in that there are no epistatic interactions between blocks, our results will in
general be qualitatively valid for landscapes where there are “weak” interactions
between blocks.

3.2 The Metrics

We now turn to the question of how performance will be measured. The metrics
we will use are:

1. ΔI(m, t) = P ′
I(t)−P ′

Im
(t)P ′

Im̄
(t), which, as explained in section 3, measures

how recombination contributes to the frequency change of a given string,
schema or BB I from generation t to generation t + 1.

2. PI(O1, O2, t) = PO1
I (t)/PO2

I (t) measures the relative effect of a set of oper-
ators O1 with respect to another set O2 in the production of a given string,
schema or BB I from generation t to generation t + 1. By normalizing with
respect to the operator set O2 we can isolate the effects of the operators that
are different between the two sets. For instance, if O1 represents selection
and recombination, while O2 represents selection only, then P(O1, O2, t) rep-
resents the proportion of objects of type I produced by recombination in the
presence of selection relative to the proportion produced by selection alone.

3. Distance of the population at time t from the Geiringer manifold dG =
(
∑

I(PI(t) − PG(t))2)1/2, where PG(t) =
∏N

i=1 PIi(t) gives the point on the
Geiringer manifold associated with the current population.

4. Distance of the population at time t from the center of the simplex, dC =
(
∑

I(PI(t) − PC)2)1/2, where PC = 1/2N is the frequency of each string in
a random population.

5. Distance of the population at time t from an ordered population at the
optimal vertex of the simplex, dO = (

∑
I(PI(t) − PO)2)1/2, where PO =

δ opt
I is 1 when the entire population is at the optimal vertex opt and zero

otherwise.

3.3 What’s the Point?

It should be emphasized that (4) gives an exact description of the dynamics in
the infinite population limit. However, one is confronted by the question - so
what? What can these equations tell us? There are answers to this question at
different levels of abstraction. First of all, the equations tell us indeed how, in
principle, a recombinative GA builds up “solutions” (optimal or near-optimal
strings) by recombining “partial solutions” (BBs) of the solution. Furthermore,
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the BBs of that solution could also have been produced by their own BBs etc.
until one arrives at the “Adam and Eve” schemata - the one-schemata, the most
primitive members of the BB hierarchy. In fact, if the solution isn’t already
present, then, in the absence of mutation, construction of a “good” solution by
joining together its BBs is the only way of getting it. Furthermore, if there do
not exist pairs of conjugate BBs in the population with which I can be obtained,
then the only way to obtain these BBs is to recombine their BBs.4

This can be simply illustrated with a concrete example. Consider for N = 3
and one-point crossover, the evolution of a “good” solution, which we arbitrarily
take to be 111, then

P111(t + 1) = (1− pc)P ′
111(t) +

pc

2
(P ′

1∗∗(t)P
′
∗11(t) + P ′

11∗(t)P
′
∗∗1(t)) (8)

The right hand side of this equation depends on P1∗∗(t), P∗11(t), P11∗(t) and
P∗∗1(t). The corresponding equations for them, and the other elements of the
BBB are

P11∗(t + 1) = (1− pc

2
)P ′

11∗(t) +
pc

2
P ′

1∗∗(t)P
′
∗1∗(t) (9)

P1∗1(t + 1) = (1− pc)P ′
1∗1(t) + pcP

′
1∗∗(t)P

′
∗∗1(t) (10)

P∗11(t + 1) = (1− pc

2
)P ′

∗11(t) +
pc

2
P ′
∗1∗(t)P

′
∗∗1(t) (11)

P1∗∗(t + 1) = P ′
1∗∗(t) (12)

P∗1∗(t + 1) = P ′
∗1∗(t) (13)

P∗∗1(t + 1) = P ′
∗∗1(t) (14)

P∗∗∗(t + 1) = P ′
∗∗∗(t) = 1 (15)

Thus, we can clearly see how a solution can be built from its BBs, which in
their turn can be constructed from their BBs. The most coarse-grained BBs, the
one-schemata, satisfy homogeneous (they don’t have BBs) equations that for a
given generation are explicitly independent of pc. Note that the BBB also tells
us that a complete description of how to obtain a good solution depends only
on the 8 BBs of the solution not on any of the other 19 ((27-8)) possible 3-bit
schemata that are not BBs of 111. Thus, for example, the schema 0 ∗ 1 cannot
enter into the dynamics of the solution 111, or of any of its BBs.

It is worth noting that there are also BBs for selection only dynamics. The
chief difference compared to recombinative dynamics is that they cannot be
joined together. However, considering the selection only case allows us to de-
duce which BBs are preferred in the selection process before being put to-
gether. Thus, for example, for the modular landscapes defined in section 3.1, we
can determine which optimal BBs are preferred, i.e., are selected with higher
probability. To understand the bias of selection for BBs we consider a ran-
dom population and calculate the fitnesses of the different optimal BBs in each
4 These statements are just as true for a finite population as an infinite population,

the only difference there being that in a finite population the actual number of times
a BB is sampled could be quite different to the expected number.
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landscape. For illustration, for N = 4, for one landscape block (i.e., NIAH):
f1111(= 2) > (f111∗ = f1∗11 = f11∗1 = f∗111(= 3/2)) > (f11∗∗ = f1∗1∗ =
f1∗∗1 = f∗11∗ = f∗∗11 = f∗1∗1(= 5/4)) > (f1∗∗∗ = f∗1∗∗ = f∗∗1∗ = f∗∗∗1
(= 9/8)) > f∗∗∗∗(= 17/16). Thus, higher order optimal BBs will be selected
preferentially. For four landscape blocks (i.e., counting ones) the analogous hier-
archy is: f1111(= 4) > f111∗(= 7/2) > f11∗∗(= 3) > f1∗∗∗(= 5/2) > f∗∗∗∗(= 2),
where, as in the one block case, each BB of a fixed order has the same fit-
ness, e.g. f11∗∗ = f1∗1∗. So, for these landscapes there is no dependence on the
arrangement of the optimal alleles, only on their number. Consider now though
the landscape with 2 NIAH blocks. In this case, as with the one-block and four
block landscapes f1111 > f111∗ > f11∗∗ > f1∗∗∗ > f∗∗∗∗, but now, in distinction,
f11∗∗(= 13/4) > f1∗1∗(= 3). The reason for this is, of course, obvious, the BB
11 ∗ ∗ respects the block structure of the fitness landscape, i.e. the BB 11 ∗ ∗
is also a complete landscape block. On the other hand, 1 ∗ 1∗ is not a com-
plete landscape block but rather corresponds to two suboptimal blocks. Thus,
the modular nature of the landscapes we are considering define corresponding
preferred optimal BBs.

Having seen that in the dynamics of selection and recombination the only way
to get a good solution is to either start with it or construct it from its BBs we can
now try to answer the more specific questions of: i) under what circumstances
recombination is useful? ii) what schemata or BBs are useful?

Point i) has a first obvious answer - when the solution or desired BB is not
already present. However, does this mean that if it is present then recombination
is not useful? As can be clearly seen from (4) the utility of recombination, i.e.,
the sign of ΔI , in a given generation and for a given string or BB, depends
both on the fitness landscape and the current population. If PI(t) = 0, then
ΔI(m, t) ≥ 0 ∀m, and recombination is a positive or neutral effect. However
there exists a critical value of PI , P c

I , given by

P c
I =

fImPImfIm̄PIm̄

fI f̄
(16)

such that for PI ≥ P c
I , ΔI ≥ 0 and hence recombination and selection produce

less copies of the good solution than selection alone. The question then is: is this
existence of a critical frequency a landscape independent effect? To investigate
this we will “neutralize” the population effect by putting in a random population,
i.e., PI(t) = 1/2N . Then,

ΔI(m, t) =
(fI f̄(t)− fIm(t)fIm̄(t))

2N f̄2(t)
(17)

Two simple landscapes are the NIAH and counting ones landscapes. Considering
first NIAH, for N = 4 and one-point crossover, where the optimum is 1111,
then f1111 = 2 and f̄ = 17/16. For m = 0001, f111∗ = 3/2 and f∗∗∗1 = 9/8,
hence, Δ1111(0001) = 7/172 > 0 and so we conclude that for a random (infinite)
population in a NIAH landscape recombination is disadvantageous. Δ1111 can
similarly be shown to be greater than zero for any mask. On the other hand
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for counting ones: f1111 = 8 and f̄ = 6. For m = 0001, f111∗ = 15/2 and
f∗∗∗1 = 13/2. Thus, Δ1111(0001) = −3/2304 < 0, therefore we see that for this
mask recombination is advantageous, in that it leads to more optimal strings
than pure selection. Once again, it is simple to show, for any N and any m,
that Δ1111 is always negative. This also holds for any BB of the optimal string.
As a final example, let’s consider N = 4, M = 2. In this case, f1111 = 4 and
f̄ = 5/2. For m = 0001, f111∗ = 7/2 and f∗∗∗1 = 11/4 from which we deduce
that Δ1111(0001) = 9/1600 > 0, and therefore that for this mask recombination
is disadvantageous. On the other hand, for m = 0011, one finds f11∗∗ = 13/4
and f∗∗11 = 13/4 which yields Δ1111(0011) = −9/1600 < 0. Thus, we see that
in general the utility of recombination depends not only on the fitness landscape
and the population but also on the specific mask used. In this case, the mask
0001 leads to a negative effect while the mask 0011 leads to a positive one. The
reason for this is that the mask 0001 does not respect the boundaries of the
natural blocks as defined by the fitness landscape, which in this case are the first
two loci as one block and the last two as another. The mask 0011 on the other
hand does respect the landscape blocks and therefore is less destructive.

4 Results

4.1 Benchmarks

We begin here by considering two “benchmarks”: what happens in the presence
of selection only and what happens in the presence of recombination and/or mu-
tation in the absence of selection. In this sense we are looking at the “intrinsic”
biases of the individual operators without regard as to how they interact. We
start off with Figure 1, seeing the effects of recombination and mutation in a flat
fitness landscape. We consider the system with pc = 0, 1 and p = 0, 0.1. Shown
are the three distance measures dG, dC and dO. As we know analytically that
dG = dC = 0 for a random population (this corresponds to the center of the
simplex which is also a point on the Geiringer manifold) we consider an initial
population that is non-random, choosing P0000(0) = 0.2, P1111(0) = 0.8. As the
initial population is not on the Geiringer manifold we can see that in the absence
of mutation or recombination the distance to the Geiringer manifold or the cen-
ter stays constant. Recombination moves the population in the direction of the
Geiringer manifold exponentially quickly, dG ∼ (0.67)t. In contrast, the popu-
lation nears the center initially, before eventually settling down at a constant
distance from it. For mutation in the absence of recombination, one can see that
the population approaches the Geiringer manifold and the center exponentially
quickly, with rates (0.64)t for the Geiringer manifold, and (0.80)t for the center,
showing that with mutation alone the system approaches the Geiringer manifold
even quicker than it approaches the center. At least with this quite high muta-
tion rate then, we see that mutation takes the population more quickly towards
the Geiringer manifold than the center. Finally, with recombination and muta-
tion together we see that the population approaches the Geiringer manifold as
(0.42)t, i.e. the two acting together give an uncorrelated population much quicker
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Simplex Metrics in Flat Landscape. P0000(0)=0.8, P1111(0)=0.2
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Fig. 1. Time evolution of the simplex metrics for a flat landscape and inhomogeneous
initial population. Two recombination rates - 0 and 1 - and two mutation rates - 0 and
0.1 are shown.

than either separately. Also, we can see that recombination does not move the
system in the direction of the center, so mutation can take you to the Geiringer
manifold but recombination can’t take you to the center.

In Figure 2 we see how different ΔI evolve under the same conditions as the
distance measures of Figure 1. We can see that in the absence of recombination
and mutation correlations in the population are preserved. In the presence of re-
combination however, the ΔI tend to zero, as in this case the system approaches
the Geiringer manifold, where by definition ΔI = 0. We can see that all the
correlations eventually decay exponentially rapidly with the same fixed expo-
nent. The correlations for 11∗, 111∗ and 1111 all decay the same asymptotically
because they are dominated by the decay rate of 11 ∗ ∗. On the other hand the
Δ for 1 ∗ 1∗ decays more rapidly because there are more cutting points for this
schema when compared to the BB 11 ∗ ∗. Interestingly, for 11 ∗ 1 its decay rate
depends on the mask used. If the mask is 01 ∗ 1, i.e., the first two bits are cut
then things decay less rapidly than with the mask 00 ∗ 1. This is because the BB
∗1 ∗ 1 decays more rapidly than the BB 11 ∗ ∗. In the presence of pure mutation,
once again the ΔI go to zero, while with mutation and recombination together
we get the same exponential decays as with recombination alone but now the
transients decay more rapidly.

In Figure 3 we turn to the question of whether in the presence of pure selection
certain BBs are preferred. We showed analytically in section 3.3 how higher order
BBs were selectively preferred from a random population for NIAH and counting
ones. Here we consider the evolution of different optimal BBs as a function of
time, optimal meaning they are BBs of the optimal string. Graphed here are
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Deltas in flat landscape. N=4. P0000(0)=0.8, P1111(0)=0.2.
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Fig. 2. Graph of ΔI in flat landscape with inhomogeneous initial population. The
notation is such that the first four symbols refer to the schemata and the second four
to the mask set. The curves for the masks of a mask set are equivalent, e.g. for mask
set 00 ∗ 1 the curves for 0001 and 0011 are the same.

normalized BB frequencies, the normalization being with respect to the number
of strings that contribute to the BB. This normalization assures that we do not
conclude that a block is preferred just because it is low order in that there are
more strings that contribute to it.

The fitness landscapes chosen here are for N = 4 with one block (NIAH),
two blocks and 4 blocks (counting ones). As can be seen in the graph for all
three landscapes and in concordance with our theoretical prediction there is a
preference for higher order optimal BBs that are closer to the optimal string
(1111). This is because the effective fitness (which in this case of selection only
dynamics is the same as the schema fitness) is greater for higher order BBs.
However, in distinction with the NIAH and unitation cases, for the landscape
with 2 NIAH blocks, and as predicted, the evolution of the BBs depends on the
distribution of optimal alleles across the different blocks, optimal alleles that
form complete optimal landscape blocks being preferred to those that are split
across different landscape blocks. These results generalize to any value of M ,
the extreme cases of 1 or N blocks being the only ones where the distribution
of optimal alleles does not influence the evolution.

4.2 Dependency on Landscape Modularity

We now turn to consider the question of how recombination and selection inter-
act. We already predicted in section 3.3 that in the NIAH landscape once the
optimal string was found, and reached a certain critical frequency, that recom-
bination would be disadvantageous, as ΔIopt(t, m) > 0 for any m. Similarly, we
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Normalized concentrations for 1,2 and 4 NIAH blocks.
Selection only.
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Fig. 3. Graph of normalized BB frequency for selection only dynamics for modular
landscapes with 1 (left), 2 (middle) and 4 (right) landscape blocks

predicted that for counting ones recombination would always be beneficial. Here
we will examine these predictions in terms of an integration of the equations.

In Figure 4 we plot PI(s + r, s, t) as a function of time for different optimal
BBs. In integrating the equations, one-point crossover and the same random pop-
ulation initial condition were used, irrespective of the set of operators present.
As we can see, PI(s + r, s, t) < 1 for all optimal BBs, thus showing that recom-
bination is disadvantageous in the presence of the optimal string. Furthermore,
the relative disadvantage depends on both the order and size of the BB. Thus,
the higher the order the bigger the disadvantage and the longer the length for
a given order the bigger the disadvantage. Thus, among the optimal order-two
schemata P11∗∗ > P1∗1∗ > P1∗∗1. All of this is in line with the conclusions of the
BBH - smaller, fit (optimal) BBs are preferred. One distinction though is that
the BBH as based on HST would also consider 1 ∗ 1∗ and 1 ∗ ∗1 as “building
blocks”. Although, they are elements of the BBB, for one-point crossover they
cannot appear as BBs of any higher-order BB of the optimal string or the optimal
string itself. Hence, they do not enter into the dynamics of the optimal string.

In Figure 5 we consider the same plot as for Figure 4 but now for a counting
ones (four-block) landscape. Now we see the completely opposite effect to that
of the one-NIAH block landscape, i.e., that recombination is advantageous in the
presence of the optimal string and therefore is always advantageous in creating
optimal strings. Additionally, the higher the order of the BB or schema and
the longer the length for a given order the greater the advantage. Thus, in this
case, for example, P1∗∗1 > P1∗1∗ > P11∗∗. This is contrary to the BBH, the
reason being that the longer the schema or BB the easier it is to construct from
its BB constituents. There is another interesting effect to notice here too: that
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Effect of crossover. 1 NIAH block. N =4, p =0

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

P
(s

+r
)/

P
(s

)

****

1***, *1**, **1*, ***1

11**, *11*, **11

1*1*, *1*1

1**1

111*, *111

11*1, 1*11

1111

Fig. 4. Graph of PI(s + r)/PI(s) as a function of time for N = 4, 1 NIAH block and
one-point crossover

Effect of crossover. 4 NIAH blocks. N =4, p =0.
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Fig. 5. Graph of PI(s + r)/PI(s) as a function of time for N = 4, 4 NIAH blocks and
one-point crossover

not all order-one BBs have the same evolution, BBs associated with loci at the
boundary being preferred to those away from the boundary. This is not a direct
effect of recombination, as pc does not explicitly enter in the equations for the
order-one BBs, but rather an indirect one, in that it enters in the schema fitness
of the BBs. Thus, in this case, f1∗∗∗ > f∗1∗∗.
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Deltas 2 NIAH blocks. N =4, p c =1, p =0.
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Fig. 6. Graph of PI(s + r)/PI(s) as a function of time for N = 4, 2 NIAH blocks and
one-point crossover. The notation is Im, i.e. the string or schema being constructed
and the corresponding mask.

Finally, we turn to the case of N = 4 and 2 NIAH blocks. In Figure 6 we
see a graph of ΔI as a function of time for different optimal BBs and schemata.
Remembering that if ΔI is negative recombination is disadvantageous and if
positive advantageous we now see the interesting feature that whether or not re-
combination is useful depends precisely on which crossover mask is chosen. What
distinguishes the positive from the negative curves is the property of whether the
mask cuts a landscape block. Thus, for this landscape there are two order-two
landscape blocks - 11 ∗ ∗ and ∗ ∗ 11. All the masks that lead to ΔI > 0 are such
that they cut a landscape block of this type. Thus, for example ∗111 ∗001 means
the optimal BB ∗111 with respect to the masks 0001 and 1001. In this case the
two relevant BBs for the optimal block ∗111 are ∗11∗ and ∗ ∗ ∗1. In this case
the BB ∗11∗, as defined by the crossover operation, is not a complete landscape
block. On the other hand, for ∗111∗011 the relevant BBs for ∗111 are ∗1 ∗ ∗ and
∗ ∗ 11. In this case, the BB as defined by the crossover operation, ∗ ∗ 11, is also
a landscape block. It is precisely the compatibility between landscape defined
blocks and crossover defined BBs that leads to the efficacy of recombination.
Thus, one should not ask so much whether recombination is good or bad but
rather if a certain recombination mask is good or not.

5 Finite Population Effects

In this section we will compare the infinite population model results with those
using finite populations. We first check the validity of the model by comparing
with a large population size as plotted in Figure 7 which is analogous to Figure 5
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for the case of counting ones. The population was set to be 100 times the total
number of possible states, i.e., 100 ∗ 2N . We plot the average of 5 runs starting
from a random population. For this large population size, even though the num-
ber of runs is small, we can see a clear correspondence between the finite and
infinite population results.
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The principle feature of Figure 7 with respect to the effect of recombination is
that we can clearly see the positive effect of recombination, as PI(s+ r)/PI(s)−
1 > 0 over the whole evolution. In this case the use of lower order BBs to
construct higher order ones is aiding the search for the optimum. What is more,
the higher the order of the BB being constructed the more beneficial is the
effect of crossover. For instance, the BB 111∗∗∗ is preferred relative to 11∗∗∗∗.
Similarly, the optimal two-schemata 1 ∗ ∗ ∗ ∗1 is preferred relative to 11 ∗ ∗ ∗ ∗.
Thus, in this case, contrary to the BBH, large BBs or schemata are preferred
relative to their lower-order or smaller counterparts.

In Figure 8 we see the analogous graph to Figure 7 but now for a population
size of 2N/10. We can now see at this population size the dominant effect of drift.
However, it is important to notice that generally the curves have a tendency
to increase, thus showing that for this landscape recombination is aiding the
evolution in finding optimal BBs or schemata.

6 Conclusions

In this paper we have shown how a selecto-recombinative EA can be most natu-
rally understood in terms of Building Blocks that form a basis for the description
of the dynamics and which, in distinction to the notion of building block inher-
ent in the BBH and HST, can be given a complete and rigorous mathematical
characterization. By examining the exact course grained evolution equations (the
equations in the BBB), we saw that one could predict when recombination would
be useful and when not and that this depended on both the fitness landscape and
the current population state. Further, we noted that, rather than ask whether
or not recombination was useful, it was instead more appropriate to ask which
recombination masks were useful as a given crossover mask uniquely defined a
pair of conjugate BBs.

We showed that recombination was especially benficial in modular landscapes,
where there exists a natural notion of landscape “block”, i.e. a subset of loci with
mutual epistasis, and zero epistasis with loci outside of the subset. The utility of
recombination very much depended on having masks that defined BBs that were
compatible with these landscape blocks. We considered a family of landscapes
with tunable modularity by changing the number of landscape blocks, NIAH and
counting ones being the two extremes of this modularity spectrum. For NIAH,
save that the optimum is not present, we could see that recombination was not
useful. In this sense, the less modular is the landscape the more appropriate
it is to use mutation as the principle search operator. The more modular the
landscape the more useful recombination potentially becomes, at least if the
landscape and recombination blocks are compatible. Hence, for counting ones
it is better to have as much recombination as possible, as there do not exist
crossover masks that can disrupt the landscape blocks. On the other hand for
landscapes with M < N blocks, and hence M − 1 crossover points that do not
disrupt a landscape block, it is better to have masks that cut only at landscape
block boundaries.
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There are other questions that equally can be addressed in an analogous fash-
ion, such as: under what conditions mutation might be expected to be more
useful than recombination. We can also understand that the recombination dis-
tribution is an absolutely fundamental quantity, that specifying it a priori - such
as one-point, two-point, uniform crossover etc. - introduces a bias as to what the
crossover defined BBs are, and that this bias might be completely inappropriate
for the fitness landscape under consideration. In fact, this is precisely the reason
why the Royal Road “program” “failed” - there were so many destructive masks
(those that cut at points within a landscape block) compared to constructive
ones (ones that cut at a landscape block boundary) that recombination was
doomed to be suboptimal. The question then is how does one choose suitable
masks? Of course, a qualititative understanding of the interaction between land-
scape and recombination blocks will certainly help. In more complicated cases
however, it is probably useful to put the recombination distribution under evo-
lutionary control, i.e., to let it evolve so that the most efficacious (i.e., effectively
fit) masks are selected for. It seems to us to be highly likely that that is precisely
what has happened in nature and is the explanation as to why recombination
“hot spots” have emerged.
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de la Información y la Computación” for financial support. JC thanks Conacyt
for a doctoral fellowship.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cam-
bridge, MA (1993)

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading, MA (1989)

3. Vose, M.D.: The simple genetic algorithm: Foundations and theory. MIT Press,
Cambridge, MA (1999)

4. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms:
Fitness landscapes and ga performance. In: Varela, F.J., Bourgine, P. (eds.) Pro-
ceedings of the First European Conference on Artificial Life, pp. 243–254. MIT
Press, Cambridge, MA (1992)

5. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block
hypothesis. In: Whitley, L.D. (ed.) Foundations of genetic algorithms 2, pp. 109–
126. Morgan Kaufmann, San Mateo (1993)

6. Jansen, T., Wegener, I.: Real royal road functionswhere crossover provably is es-
sential. Discrete Applied Mathematics 149(1-3), 111–125 (2005)

7. Watson, R.A.: Analysis of recombinative algorithms on a non-separable building-
block problem. In: Foundations of Genetic Algorithms, pp. 69–89. Morgan Kauf-
mann, San Mateo (2001)

8. Stephens, C.R., Waelbroeck, H.: Schemata evolution and building blocks. Evol.
Comp. 7, 109–124 (1999)



34 C.R. Stephens and J. Cervantes

9. Stephens, C.R.: Some exact results from a coarse grained formulation of genetic dy-
namics. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), July 7-11, 2001, pp. 631–638. Morgan Kaufmann, San Francisco,
California, USA (2001)

10. Stephens, C.R., Waelbroeck, H., Aguirre, R.: Schemata as building blocks: Does
size matter? In: FOGA, pp. 117–133 (1998)

11. Beyer, H.-G.: An alternative explanation for the manner in which genetic algo-
rithms operate. BioSystems 41(1), 1–15 (1997)

12. Jones, T.: Crossover, macromutation, and population-based search. In: Eshelman,
L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms,
pp. 73–80. Morgan Kaufmann, San Francisco, CA (1995)

13. Grefenstette, J.J.: Deception considered harmful. In: Foundations of Genetic Al-
gorithms, pp. 75–91. Morgan Kaufmann, San Mateo (1992)

14. Harik, G.R., Goldberg, D.G.: Learning linkage. In: FOGA 4, pp. 247–262 (1996)
15. Stephens, C.R.: The renormalization group and the dynamics of genetic systems.

Acta Phys. Slov. 52, 515–524 (2002)



Sufficient Conditions for Coarse-Graining

Evolutionary Dynamics

Keki Burjorjee

DEMO Lab,
Computer Science Department,

Brandeis University, Waltham, MA 02454
kekib@cs.brandeis.edu

Abstract. It is commonly assumed that the ability to track the fre-
quencies of a set of schemata in the evolving population of an infinite
population genetic algorithm (IPGA) under different fitness functions
will advance efforts to obtain a theory of adaptation for the simple GA.
Unfortunately, for IPGAs with long genomes and non-trivial fitness func-
tions there do not currently exist theoretical results that allow such a
study. We develop a simple framework for analyzing the dynamics of
an infinite population evolutionary algorithm (IPEA). This framework
derives its simplicity from its abstract nature. In particular we make no
commitment to the data-structure of the genomes, the kind of variation
performed, or the number of parents involved in a variation operation.
We use this framework to derive abstract conditions under which the
dynamics of an IPEA can be coarse-grained. We then use this result to
derive concrete conditions under which it becomes computationally fea-
sible to closely approximate the frequencies of a family of schemata of
relatively low order over multiple generations, even when the bitstsrings
in the evolving population of the IPGA are long.

1 Introduction

It is commonly assumed that theoretical results which allow one to track the
frequencies of schemata in an evolving population of an infinite population ge-
netic algorithm (IPGA) under different fitness functions will lead to a better
understanding of how GAs perform adaptation [7,6,8]. An IPGA with genomes
of length � can be modelled by a set of 2� coupled difference equations. For each
genome in the search space there is a corresponding state variable which gives
the frequency of the genome in the population, and a corresponding difference
equation which describes how the value of that state variable in some gener-
ation can be calculated from the values of the state variables in the previous
generation. A naive way to calculate the frequency of some schema over multiple
generations is to numerically iterate the IPGA over many generations, and for
each generation, to sum the frequencies of all the genomes that belong to the
schema. The simulation of one generation of an IPGA with a genome set of size
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N has time complexity O(N3), and an IPGA with bitstring genomes of length �
has a genome set of size N = 2�. Hence, the time complexity for a numeric simu-
lation of one generation of an IPGA is O(8�) . (See [19, p.36] for a description of
how the Fast Walsh Transform can be used to bring this bound down to O(3�).)
Even when the Fast Walsh Transform is used, computation time still increases
exponentially with �. Therefore for large � the naive way of calculating the fre-
quencies of schemata over multiple generations clearly becomes computationally
intractable1.

Holland’s schema theorem [7,6,8] was the first theoretical result which allowed
one to calculate (albeit imprecisely) the frequencies of schemata after a single
generation. The crossover and mutation operators of a GA can be thought to
destroy some schemata and construct others. Holland only considered the de-
structive effects of these operators. His theorem was therefore an inequality.
Later work [15] contained a theoretical result which gives exact values for the
schema frequencies after a single generation. Unfortunately for IPGAs with long
bitstrings this result does not straightforwardly suggest conditions under which
schema frequencies can be numerically calculated over multiple generations in a
computationally tractable way.

1.1 The Promise of Coarse-Graining

Coarse-graining is a technique that has widely been used to study aggregate
properties (e.g. temperature) of many-body systems with very large numbers
of state variables (e.g. gases). This technique allows one to reduce some sys-
tem of difference or differential equations with many state variables (called the
fine-grained system) to a new system of difference or differential equations that
describes the time-evolution of a smaller set of state variables (the coarse-grained
system). The state variables of the fine-grained system are called the microscopic
variables and those of the coarse-grained system are called the macroscopic vari-
ables. The reduction is done using a surjective non-injective function between
the microscopic state space and the macroscopic state space called the partition
function. States in the microscopic state space that share some key property
(e.g. energy) are projected to a single state in the macroscopic state space. The
reduction is therefore ‘lossy’, i.e. information about the original system is typi-
cally lost. Metaphorically speaking, just as a stationary light bulb projects the
shadow of some moving 3D object onto a flat 2D wall, the partition function
projects the changing state of the fine-grained system onto states in the state
space of the coarse-grained system.

The term ‘coarse-graining’ has been used in the Evolutionary Computation
literature to describe different sorts of reductions of the equations of an IPGA.
Therefore we now clarify the sense in which we use this term. In this paper a
reduction of a system of equations must satisfy three conditions to be called a
coarse-graining. Firstly, the number of macroscopic variables should be smaller

1 Vose reported in 1999 that computational concerns force numeric simulation to be
limited to cases where � ≤ 20.
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than the number of microscopic variables. Secondly, the new system of equa-
tions must be completely self-contained in the sense that the state-variables in
the new system of equations must not be dependent on the microscopic vari-
ables. Thirdly, the dynamics of the new system of equations must ‘shadow’ the
dynamics described by the original system of equations in the sense that if the
projected state of the original system at time t = 0 is equal to the state of the
new system at time t = 0 then at any other time t, the projected state of the
original system should be closely approximated by the state of the new system.
If the approximation is instead an equality then the reduction is said to be an
exact coarse-graining. Most coarse-grainings are not exact. This specification of
coarse-graining is consistent with the way this term is typically used in the scien-
tific literature. It is also similar to the definition of coarse-graining given in [12]
(the one difference being that in our specification a coarse-graining is assumed
not to be exact unless otherwise stated).

Suppose the vector of state variables x(t) is the state of some system at time
t and the vector of state variables y(t) is the state of a coarse-grained system at
time t. Now, if the partition function projects x(0) to y(0), then, since none of the
state variables of the original system are needed to express the dynamics of the
coarse-grained system, one can determine how the state of the coarse-grained
system y(t) (the shadow state) changes over time without needing to determine
how the state in the fine-grained system x(t) (the shadowed state) changes. Thus,
even though for any t, one might not be able to determine x(t), one can always be
confident that y(t) is its projection. Therefore, if the number of state variables
of the coarse-grained system is small enough, one can numerically iterate the
dynamics of the (shadow) state vector y(t) without needing to determine the
dynamics of the (shadowed) state vector x(t).

In this paper we give sufficient conditions under which it is possible to coarse-
grain the dynamics of an IPGA such that the macroscopic variables are the
frequencies of the family of schemata in some schema partition. If the size of
this family is small then, regardless of the length of the genome, one can use
the coarse-graining result to numerically calculate the approximate frequencies
of these schemata over multiple generations in a computationally tractable way.
Given some population of bitstring genomes, the set of frequencies of a family of
schemata describe the multivariate marginal distribution of the population over
the defined locii of the schemata. Thus another way to state our contribution is
that we give sufficient conditions under which the multivariate marginal distri-
bution of an evolving population over a small number of locii can be numerically
approximated over multiple generations regardless of the length of the genomes.

We stress that our use of the term ‘coarse-graining’ differs from the way
this term has been used in other publications. For instance in [16] the term
‘coarse-graining’ is used to describe a reduction of the IPGA equations such
that each equation in the new system is similar in form to the equations in the
original system. The state variables in the new system are defined in terms of the
state variables in the original system. Therefore a numerical iteration of the the
new system is only computationally tractable when the length of the genomes



38 K. Burjorjee

is relatively short. Elsewhere the term coarse-graining has been defined as “a
collection of subsets of the search space that covers the search space”[5], and as
“just a function from a genotype set to some other set”[4].

1.2 Some Previous Coarse-Graining Results

Techniques from statistical mechanics have been used to coarse-grain GA dy-
namics in [9,10,11] (see [13] for a survey of applications of statistical mechanics
approaches to GAs). The macroscopic variables of these coarse-grainings are the
first few cumulants of the fitness distribution of the evolving population. In [12]
several exact coarse-graining results are derived for an IPGA whose variation
operation is limited to mutation.

Wright et. al. show in [20] that the dynamics of a non-selective IPGA can be
coarse-grained such that the macroscopic variables are the frequencies of a family
of schemata in a schema partition. However they argue that the dynamics of a
regular selecto-mutato-recombinative IPGA cannot be similarly coarse-grained
“except in the trivial case where fitness is a constant for each schema in a schema
family”[20]. Let us call this condition schematic fitness invariance. Wright et.
al. imply that it is so severe that it renders the coarse-graining result essentially
useless.

This negative result holds true when there is no constraint on the initial pop-
ulation. In this paper we show that if we constrain the class of initial populations
then it is possible to coarse-grain the dynamics of a regular IPGA under a much
weaker constraint on the fitness function. The constraint on the class of initial
populations is not onerous; this class includes the uniform distribution over the
genome set.

1.3 Structure of This Paper

The rest of this paper is organized as follows: in the next section we define the
basic mathematical objects and notation which we use to model the dynam-
ics of an infinite population evolutionary algorithm (IPEA). This framework is
very general; we make no commitment to the data-structure of the genomes,
the nature of mutation, the nature of recombination , or the number of parents
involved in a recombination. We do however require that selection be fitness
proportional. In section 3 we define the concepts of semi-coarsenablity, coarsen-
ablity and global coarsenablity which allow us to formalize a useful class of exact
coarse-grainings. In section 4 and section 5 we prove some stepping-stone results
about selection and variation. We use these results in section 6 where we prove
that an IPEA that satisfies certain abstract conditions can be coarse-grained.
The proofs in sections 5 and 6 rely on lemmas which have been relegated to and
proved in the appendix. In section 7 we specify concrete conditions under which
IPGAs with long genomes and non-trivial fitness functions can be coarse-grained
such that the macroscopic variables are schema frequencies and the fidelity of
the coarse-graining is likely to be high. We conclude in section 8 with a summary
of our work.
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2 Mathematical Preliminaries

Let X, Y be sets and let ξ : X→Y be some function. For any y∈Y we use the
notation 〈y〉ξ to denote the pre-image of y, i.e. the set {x ∈ X |β(x) = y}. For
any subset A ⊂ X we use the notation ξ(A) to denote the set {y ∈ Y | ξ(a) =
y and a ∈ A}.

As in [17], for any set X we use the notation ΛX to denote the set of all
distributions over X , i.e. ΛX denotes set {f : X → [0, 1] |

∑
x∈X f(x) = 1}. For

any set X , let 0X : X → {0} be the constant zero function over X . For any set
X , an m-parent transmission function [14,1,18] over X is an element of the set{

T :
m+1∏

1

X → [0, 1]
∣∣∣∣ ∀x1, . . . , xm ∈ X,

∑
x∈X

T (x, x′
1, . . . , x

′
m) = 1

}
Extending the notation introduced above, we denote this set by ΛX

m. Following
[17], we use conditional probability notation in our denotation of transmission
functions. Thus an m-parent transmission function T (x, x1, . . . , xm) is denoted
T (x|x1, . . . , xm).

A transmission function can be used to model the individual-level effect of
mutation, which operates on one parent and produces one child, and indeed the
individual-level effect of any variation operation which operates on any numbers
of parents and produces one child.

Our scheme for modeling EA dynamics is based on the one used in [17]. We
model the genomic populations of an EA as distributions over the genome set.
The population-level effect of the evolutionary operations of an EA is modeled
by mathematical operators whose inputs and outputs are such distributions.

The expectation operator, defined below, is used in the definition of the se-
lection operator, which follows thereafter.

Definition 1. (Expectation Operator) Let X be some finite set, and let
f : X → R

+ be some function. We define the expectation operator Ef : ΛX ∪
0X → R

+ ∪ {0} as follows:

Ef(p) =
∑
x∈X

f(x)p(x)

The selection operator is parameterized by a fitness function. It models the effect
of fitness proportional selection on a population of genomes.

Definition 2. (Selection Operator) Let X be some finite set and let f :
X → R

+ be some function. We define the Selection Operator Sf : ΛX → ΛX as
follows:

(Sfp)(x) =
f(x)p(x)
Ef (p)

The population-level effect of variation is modeled by the variation operator.
This operator is parameterized by a transmission function which models the
effect of variation at the individual level.
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Definition 3. (Variation Operator
2
) Let X be a countable set, and for any

m ∈ N
+, let T ∈ ΛX

m be a transmission function over X. We define the variation
operator VT : ΛX → ΛX as follows:

(VT p)(x) =
∑

(x1,...,xm)
∈∏m

1 X

T (x|x1, . . . , xm)
m∏

i=1

p(xi)

The next definition describes the projection operator (previously used in [19] and
[17]). A projection operator that is parameterized by some function β ‘projects’
distributions over the domain of β, to distributions over its co-domain.

Definition 4. (Projection Operator) Let X be a countable set, let Y be
some set, and let β : X → Y be a function. We define the projection operator,
Ξβ : ΛX → ΛY as follows:

(Ξβp )(y) =
∑

x∈〈y〉β

p(x)

and call Ξβp the β-projection of p.

3 Formalization of a Class of Coarse-Grainings

The following definition introduces some convenient function-related
terminology.

Definition 5. (Partitioning, Theme Set, Themes, Theme Class) Let X,
K be sets and let β : X → K be a surjective function. We call β a partitioning,
call the co-domain K of β the theme set of β, call any element in K a theme
of β, and call the pre-image 〈k〉β of some k ∈ K, the theme class of k under β.

The next definition formalizes a class of coarse-grainings in which the macro-
scopic and microscopic state variables always sum to 1.

Definition 6 (Semi-Coarsenablity, Coarsenablity, Global Coarsen-
ablity). Let G, K be sets, let W : ΛG → ΛG be an operator, let β : G → K
be a partitioning, and let U ⊆ ΛG such that Ξβ(U) = ΛK. We say that W is
semi-coarsenable under β on U if there exists an operator Q : ΛK → ΛK such
that for all p ∈ U , Q ◦Ξβp = Ξβ ◦Wp, i.e. the following diagram commutes:

U
W ��

Ξβ

��

ΛG

Ξβ

��
ΛK

Q
�� ΛK

2 Also called the Mixing Operator in [19] and [17].
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Since β is surjective, if Q exists, it is clearly unique; we call it the quotient. We
call G, K, W, and U the domain, co-domain, primary operator and turf respec-
tively. If in addition W(U) ⊆ U we say that W is coarsenable under β on U . If
in addition U = ΛG we say that W is globally coarsenable under β.

Note that the partition function Ξβ of the coarse-graining is not the same as the
partitioning β of the coarsening.

Global coarsenablity is a stricter condition than coarsenablity, which in turn
is a stricter condition than semi-coarsenablity. It is easily shown that global
coarsenablity is equivalent to Vose’s notion of compatibility [19, p. 188] (for a
proof see Theorem 17.5 in [19]).

If some operatorW is coarsenable under some function β on some turf U with
some quotient Q, then for any distribution pK ∈ Ξβ(U), and all distributions
pG ∈ 〈pK〉Ξβ

, one can study the projected effect of the repeated application of
W to pG simply by studying the effect of the repeated application of Q to pK .
If the size of K is small then a computational study of the projected effect of
the repeated application of W to distributions in U becomes feasible.

4 Global Coarsenablity of Variation

We show that some variation operator VT is globally coarsenable under some
partitioning if a relationship, that we call ambivalence, exists between the trans-
mission function T of the variation operator and the partitioning.

To illustrate the idea of ambivalence consider a partitioning β which partitions
a genome set G into three subsets. Fig 1 depicts the behavior of a two-parent
transmission function that is ambivalent under β. Given two parents and some
child, the probability that the child will belong to some theme class depends
only on the theme classes of the parents and not on the specific parent genomes.
Hence the name ‘ambivalent’ — it captures the sense that when viewed from
the coarse-grained level of the theme classes, a transmission function ‘does not
care’ about the specific genomes of the parents or the child.

The definition of ambivalence that follows is equivalent to but more useful
than the definition given in [4].

Definition 7. (Ambivalence) Let G, K be countable sets, let T ∈ ΛG
m be a

transmission function, and let β : G → K be a partitioning. We say that T is
ambivalent under β if there exists some transmission function D ∈ ΛK

m, such
that for all k, k1, . . . , km ∈ K and for any x1 ∈ 〈k1〉β , . . . , xm ∈ 〈km〉β ,∑

x∈〈k〉β

T (x|x1, . . . , xm) = D(k|k1, . . . , km)

If such a D exits, it is clearly unique. We denote it by T
−→
β and call it the theme

transmission function.
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Fig. 1. Let β : G → K be a coarse-graining which partitions the genome set G into
three theme classes. This figure depicts the behavior of a two-parent variation operator
that is ambivalent under β. The small dots denote specific genomes and the solid
unlabeled arrows denote the recombination of these genomes. A dashed arrow denotes
that a child from a recombination may be produced ‘somewhere’ within the theme class
that it points to, and the label of a dashed arrow denotes the probability with which
this might occur. As the diagram shows the probability that the child of a variation
operation will belong to a particular theme class depends only on the theme classes of
the parents and not on their specific genomes.

Suppose T ∈ ΛX
m is ambivalent under some β : X → K, we can use the

projection operator to express the projection of T under β as follows: for all
k, k1, . . . , km ∈ K, and any x1 ∈ 〈k1〉β , . . . , xm ∈ 〈km〉β , T

−→
β (k|k1, . . . km) is

given by (Ξβ(T (· |x1, . . . , xm)))(k). The notion of ambivalence is equivalent to a
generalization of Toussaint’s notion of trivial neutrality [17, p. 26]. A one-parent
transmission function is ambivalent under a mapping to the set of phenotypes if
and only if it is trivially neutral.

The following theorem shows that a variation operator is globally coarsenable
under some partitioning if it is parameterized by a transmission function which is
ambivalent under that partitioning. The method by which we prove this theorem
extends the method used in the proof of Theorem 1.2.2 in [17].

Theorem 1 (Global Coarsenablity of Variation). Let G and K be count-
able sets, let T ∈ ΛG

m be a transmission function and let β : G → K be some
partitioning such that T is ambivalent under β. Then VT : ΛG → ΛG is globally
coarsenable under β with quotient V

T
−→
β , i.e. the following diagram commutes:

ΛG
VT ��

Ξβ

��

ΛG

Ξβ

��
ΛK

V
T

−→
β

�� ΛK
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Proof: For any p ∈ ΛG,

(Ξβ ◦ VT p)(k)

=
∑

x∈〈k〉β

∑
(x1,...,xm)

∈
m∏
1

X

T (x|x1, . . . , xm)
m∏

i=1

p(xi)

=
∑

(x1,...,xm)

∈
m∏
1

X

∑
x∈〈k〉β

T (x|x1, . . . , xm)
m∏

i=1

p(xi)

=
∑

(x1,...,xm)

∈
m∏
1

X

m∏
i=1

p(xi)
∑

x∈〈k〉β
T (x|x1, . . . , xm)

=
∑

(k1,...,km)

∈
m∏
1

K

∑
(x1,...,xm)

∈
m∏

j=1
〈kj〉β

m∏
i=1

p(xi)
∑

x∈〈k〉β

T (x|x1, . . . , xm)

=
∑

(k1,...,km)

∈
m∏
1

K

∑
(x1,...,xm)

∈
m∏

j=1
〈kj〉β

m∏
i=1

p(xi)T
−→
β (k|k1, . . . , km)

=
∑

(k1,...,km)

∈
m∏
1

K

T
−→
β (k|k1, . . . , km)

∑
(x1,...,xm)

∈
m∏

j=1
〈kj〉β

m∏
i=1

p(xi)

=
∑

(k1,...,km)

∈
m∏
1

K

T
−→
β (k|k1, . . . , km)

∑
x1∈〈k1〉β

. . .
∑

xm∈〈km〉β

p(x1) . . . p(xm)

=
∑

(k1,...,km)

∈
m∏
1

K

T
−→
β (k|k1, . . . , km)

( ∑
x1∈〈k1〉

p(x1)
)

. . .

( ∑
xm∈〈km〉

p(xm)
)

=
∑

(k1,...,km)

∈
m∏
1

K

T
−→
β (k|k1, . . . , km)

m∏
i=1

(
(Ξβp)(ki)

)

= (V
T

−→
β ◦ Ξβp)(k) ��
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The implicit parallelism theorem in [20] is similar to the theorem above. Note
however that the former theorem only shows that variation is globally coarsen-
able if firstly, the genome set consists of “fixed length strings, where the size of
the alphabet can vary from position to position”, secondly the partition over the
genome set is a schema partition, and thirdly variation is ‘structural’ (see [20] for
details). The global coarsenablity of variation theorem has none of these specific
requirements. Instead it is premised on the existence of an abstract relationship
– ambivalence – between the variation operation and a partitioning. The ab-
stract nature of this relationship makes this theorem applicable to evolutionary
algorithms other than GAs. In addition this theorem illuminates the essential
relationship between ‘structural’ variation and schemata which was used (im-
plicitly) in the proof of the implicit parallelism theorem.

In [4] it is shown that a variation operator that models any combination of
variation operations that are commonly used in GAs — i.e. any combination of
mask based crossover and ‘canonical’ mutation, in any order — is ambivalent
under any partitioning that maps bitstrings to schemata (such a partitioning is
called a schema partitioning). Therefore ‘common’ variation in IPGAs is globally
coarsenable under any schema partitioning. This is precisely the result of the
implicit parallelism theorem.

5 Limitwise Semi-coarsenablity of Selection

For some fitness function f : G→ R
+ and some partitioning β : G→ K let us say

that f is thematically invariant under β if, for any schema k ∈ K, the genomes
that belong to 〈k〉β all have the same fitness. Paraphrasing the discussion in
[20] using the terminology developed in this paper, Wright et. al. argue that if
the selection operator is globally coarsenable under some schema partitioning
β : G → K then the fitness function that parameterizes the selection operator is
‘schematically’ invariant under β. It is relatively simple to use contradiction to
prove a generalization of this statement for arbitrary partitionings.

Schematic invariance is a very strict condition for a fitness function. An IPGA
whose fitness function meets this condition is unlikely to yield any substantive
information about the dynamics of real world GAs.

As stated above, the selection operator is not globally coarsenable unless the
fitness function satisfies thematic invariance, however if the set of distributions
that selection operates over (i.e. the turf) is appropriately constrained, then,
as we show in this section, the selection operator is semi-coarsenable over the
turf even when the fitness function only satisfies a much weaker condition called
thematic mean invariance.

For any partitioning β : G → K, any theme k, and any distribution p ∈ ΛG,
the theme conditional operator, defined below, returns a conditional distribution
in ΛG that is obtained by normalizing the probability mass of the elements in
〈k〉β by (Ξβp)(k)

Definition 8 (Theme Conditional Operator). Let G be some countable set,
let K be some set, and let β : G → K be some function. We define the theme



Sufficient Conditions for Coarse-Graining Evolutionary Dynamics 45

conditional operator Cβ : ΛG × K → ΛG ∪ 0G as follow: For any p ∈ ΛG, and
any k ∈ K, Cβ(p, k) ∈ ΛG ∪ 0G such that for any x ∈ 〈k〉β,

(Cβ(p, k))(x) =

{
0 if (Ξβp)(k) = 0

p(x)
(Ξβp)(k) otherwise

A useful property of the theme conditional operator is that it can be composed
with the expected fitness operator to give an operator that returns the aver-
age fitness of the genomes in some theme class. To be precise, given some finite
genome set G, some partitioning β : G → K, some fitness function f : G → R

+,
some distribution p ∈ ΛG, and some theme k ∈ K, Ef ◦ Cβ(p, k) is the aver-
age fitness of the genomes in 〈k〉β . This property proves useful in the following
definition.

Definition 9 (Bounded Thematic Mean Divergence, Thematic Mean
Invariance). Let G be some finite set, let K be some set, let β : G → K be a
partitioning, let f : G → R

+ and f∗ : K → R
+ be functions, let U ⊆ ΛG, and

let δ ∈ R
+
0 . We say that the thematic mean divergence of f with respect to f∗

on U under β is bounded by δ if, for any p ∈ U and for any k ∈ K

|Ef ◦ Cβ(p, k)− f∗(k)| ≤ δ

If δ = 0 we say that f is thematically mean invariant with respect to f∗ on U

The next definition gives us a means to measure a ‘distance’ between real valued
functions over finite sets.

Definition 10 (Manhattan Distance Between Real Valued Functions).
Let X be a finite set then for any functions f, h of type X → R we define the
manhattan distance between f and h, denoted by d(f, h), as follows:

d(f, h) =
∑
x∈X

|f(x)− h(x)|

It is easily checked that d is a metric.
Let f : G → R

+, β : G → K and f∗ : K → R
+ be functions with finite

domains, and let U ∈ ΛG. The following theorem shows that if the thematic
mean divergence of f with respect to f∗ on U under β is bounded by some δ,
then in the limit as δ → 0, Sf is semi-coarsenable under β on U .

Theorem 2 (Limitwise Semi-Coarsenablity of Selection). Let G and K
be finite sets, let β : G → K be a partitioning, Let U ⊆ ΛG such that Ξβ(U) =
ΛK , let f : G → R

+, f∗ : K → R
+ be some functions such that the thematic

mean divergence of f with respect to f∗ on U under β is bounded by δ, then for
any p ∈ U and any ε > 0 there exists a δ′ > 0 such that,

δ < δ′ ⇒ d(Ξβ ◦ Sfp,Sf∗ ◦ Ξβp) < ε
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We depict the result of this theorem as follows:

U
Sf ��

Ξβ

��
lim
δ→0

ΛG

Ξβ

��
ΛK

Sf∗
�� ΛK

Proof: For any p ∈ U and for any k ∈ K,

(Ξβ ◦ Sfp)(k)

=
∑

g∈〈k〉β

(Sfp)(g)

=
∑

g∈〈k〉β

f(g).p(g)∑
g′∈G f(g′).p(g′)

=

∑
g∈〈k〉β

f(g).(Ξβp)(k).(Cβ(p, k))(g)∑
k′∈K

∑
g′∈〈k′〉β

f(g′).(Ξβp)(k′)(Cβ(p, k′))(g′)

=

(Ξβp)(k)
∑

g∈〈k〉β
f(g).(Cβ(p, k))(g)∑

k′∈K

(Ξβp)(k′)
∑

g′∈〈k′〉β
f(g′).(Cβ(p, k′))(g′)

=
(Ξβp)(k).Ef ◦ Cβ(p, k)∑

k′∈K

(ΞβpG)(k′).Ef ◦ Cβ(p, k′)

= (SEf◦Cβ(p,·) ◦ Ξβp)(k)

So we have that

d(Ξβ ◦ Sfp,Sf∗ ◦ Ξβp) = d(SEf◦Cβ(p,·) ◦ Ξβp,Sf∗ ◦ Ξβp)

By Lemma, 4 (in the appendix) for any ε > 0 there exists a δ1 > 0 such that,

d(Ef ◦ Cβ(p, .), f∗) < δ1 ⇒ d(SEf◦Cβ(p,·)(Ξβp),Sf∗(Ξβp)) < ε

Now, if δ < δ′

|K| , then d(Ef ◦Cβ(p, .), f∗) < δ1 ��

Corollary 1. If δ = 0, i.e. if f is thematically mean invariant with respect to
f∗ on U , then Sf is semi-coarsenable under β on U with quotient Sf∗ , i.e. the
following diagram commutes:

U
Sf ��

Ξβ

��

ΛG

Ξβ

��
ΛK

Sf∗
�� ΛK
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6 Limitwise Coarsenablity of Evolution

The two definitions below formalize the idea of an infinite population model of
an EA, and its dynamics3.

Definition 11 (Evolution Machine). An evolution machine (EM) is a tuple
(G, T, f) where G is some set called the domain, f : G→ R

+ is a function called
the fitness function and T ∈ ΛG

m is called the transmission function.

Definition 12 (Evolution Epoch Operator). Let E = (G, T, f) be an evolu-
tion machine. We define the evolution epoch operator GE : ΛG → ΛG as follows:

GE = VT ◦ Sf

For some evolution machine E, our aim is to give sufficient conditions under
which, for any t ∈ Z

+, Gt
E approaches coarsenablity in the limit. The following

definition gives us a formal way to state one of these conditions.

Definition 13 (Non-Departure). Let E = (G, T, f) be an evolution machine,
and let U ⊆ ΛG. We say that E is non-departing over U if

VT ◦ Sf (U) ⊆ U

Note that our definition does not require Sf (U) ⊆ U in order for E to be non-
departing over U .

Theorem 3 (Limitwise Coarsenablity of Evolution). Let E = (G, T, f), be
an evolution machine such that G is finite, let β : G→ K be some partitioning,
let f∗ : K → R

+ be some function, let δ ∈ R
+
0 , and let U ⊆ ΛG such that

Ξβ(U) = ΛK . Suppose that the following statements are true:

1. The thematic mean divergence of f with respect to f∗ on U under β is
bounded by δ

2. T is ambivalent under β
3. E is non-departing over U

Then, letting E∗ = (K, T
−→
β , f∗) be an evolution machine, for any t ∈ Z

+ and
any p ∈ U ,

1. Gt
Ep ∈ U

2. For any ε > 0, there exists δ′ > 0 such that,

δ < δ′ ⇒ d(Ξβ ◦ Gt
Ep , Gt

E∗ ◦ Ξβp) < ε

3 The definition of an EM given here is different from its definition in [2,3]. The
fitness function in this definition maps genomes directly to fitness values. It therefore
subsumes the genotype-to-phenotype and the phenotype-to-fitness functions of the
previous definition. In previous work these two functions were always composed
together; their subsumption within a single function increases clarity.
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We depict the result of this theorem as follows:

U
Gt

E ��

Ξβ

��
lim
δ→0

U

Ξβ

��
ΛK

Gt
E∗

�� ΛK

Proof: We prove the theorem for any t ∈ Z
+
0 . The proof is by induction on

t. The base case, when t = 0, is trivial. For some n = Z
+
0 , let us assume the

hypothesis for t = n. We now show that it is true for t = n + 1. For any p ∈ U ,
by the inductive assumption Gn

Ep is in U . Therefore, since E is non-departing
over U , Gn+1

E p ∈ U . This completes the proof of the first part of the hypothesis.
For a proof of the second part note that,

d(Ξβ ◦ Gn+1
E p , Gn+1

E∗ ◦ Ξβp )
= d(Ξβ ◦ VT ◦ Sf ◦ Gn

Ep , V
T

−→
β ◦ Sf∗ ◦ Gn

E∗ ◦ Ξβp )

= d(V
T

−→
β ◦ Ξβ ◦ Sf ◦ Gn

Ep , V
T

−→
β ◦ Sf∗ ◦ Gn

E∗ ◦ Ξβp) (by theorem 1)

Hence, for any ε > 0, by Lemma 2 there exists δ1 such that

d(Ξβ ◦ Sf ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦Ξβp) < δ1 ⇒ d(Ξβ ◦ Gn+1
E p , Gn+1

E∗ ◦ Ξβp ) < ε

As d is a metric it satisfies the triangle inequality. Therefore we have that

d(Ξβ ◦ Sf ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp) ≤
d(Ξβ ◦ Sf ◦ Gn

Ep , Sf∗ ◦Ξβ ◦ Gn
Ep)+

d(Sf∗ ◦ Ξβ ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp)

By our inductive assumption Gn
Ep ∈ U . So, by theorem 2 there exists a δ2 such

that
δ < δ2 ⇒ d(Ξβ ◦ Sf ◦ Gn

Ep , Sf∗ ◦ Ξβ ◦ Gn
Ep) <

δ1

2
By lemma 3 there exists a δ3 such that

d(Ξβ ◦ Gn
Ep , Gn

E∗ ◦ Ξβp) < δ3 ⇒ d(Sf∗ ◦ Ξβ ◦ Gn
Ep , Sf∗ ◦ Gn

E∗ ◦ Ξβp) <
δ1

2

By our inductive assumption, there exists a δ4 such that

δ < δ4 ⇒ d(Ξβ ◦ Gn
Ep , Gn

E∗ ◦ Ξβp) < δ3

Therefore, letting δ′ = min(δ2, δ4) we get that

δ < δ∗ ⇒ d(Ξβ ◦ Gn+1
E p,Gn+1

E∗ ◦Ξβp) < ε ��

The limitwise coarsenability of evolution theorem is very general. As we have
not committed ourselves to any particular genomic data-structure the coarse-
graining result we have obtained is applicable to any IPEA provided that it
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satisfies three abstract conditions: bounded thematic mean divergence, ambiva-
lence, and non-departure. The fidelity of the coarse-graining depends on the the
minimal bound on the thematic mean divergence. Maximum fidelity is achieved
in the limit as this minimal bound tends to zero.

7 Sufficient Conditions for Coarse-Graining IPGA
Dynamics

We now use the result in the previous section to argue that the dynamics of
an IPGA with long genomes, uniform crossover, and fitness proportional se-
lection can be coarse-grained with high fidelity for a relatively coarse schema
partitioning, provided that the initial population satisfies a constraint called ap-
proximate achematic uniformity and the fitness function satisfies a constraint
called low-variance schematic fitness distribution. We stress at the outset that
our argument is principled but informal, i.e. though the argument rests relatively
straightforwardly on theorem 3, we do find it necessary in places to appeal to
the reader’s intuitive understanding of GA dynamics.

For any n ∈ Z
+, let Bn be the set of all bitstrings of length n. For some

� � 1 and some m � �, let β : B� → Bm be some schema partitioning. Let
f∗ : Bm → R

+ be some function. For each k ∈ Bm, let Dk ∈ ΛR
+

be some
distribution over the reals with low variance such that the mean of distribution
Dk is f∗(k). Let f : B� → R

+ be a fitness function such that for any k ∈ Bm,
the fitness values of the elements of 〈k〉β are independently drawn from the
distribution Dk. For such a fitness function we say that fitness is schematically
distributed with low-variance.

Let U be a set of distributions such that for any k ∈ Bm and any p ∈
U , Cβ(p, k) is approximately uniform. It is easily checked that U satisfies the
condition Ξβ(U) = ΛBm . We say that the distributions in U are approximately
schematically uniform.

Let δ be the minimal bound such that for all p ∈ U and for all k ∈ Bm,
|Ef ◦ Cβ(p, k) − f∗(k)| ≤ δ. Then, for any ε > 0, P(δ < ε) → 1 as � −m → ∞.
Because we have chosen � and m such that � −m is ‘large’, it is reasonable to
assume that the minimal bound on the schematic mean divergence of f on U
under β is likely to be ‘low’.

Let T ∈ ΛB� be a transmission function that models the application of uniform
crossover. In sections 6 and 7 of [4] we rigorously prove that a transmission
function that models any mask based crossover operation is ambivalent under
any schema partitioning. Uniform crossover is mask based, and β is a schema
partitioning, therefore T is ambivalent under β.

Let p 1
2
∈ ΛB1 be such that p 1

2
(0) = 1

2 and p 1
2
(1) = 1

2 . For any p ∈ U , Sfp may
be ‘outside’ U because there may be one or more k ∈ Bm such that Cβ(Sfp, k)
is not quite uniform. Recall that for any k ∈ Bm the variance of Dk is low.
Therefore even though Sfp may be ‘outside’ U , the deviation from schematic
uniformity is not likely to be large. Furthermore, given the low variance of Dk,
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the marginal distributions of Cβ(Sfp, k) will be very close to p 1
2
. Given these

facts and our choice of transmission function, for all k ∈ K, Cβ(VT ◦ Sfp, k) will
be more uniform than Cβ(Sfp, k), and we can assume that VT ◦ Sfp is in U . In
other words, we can assume that E is non-departing over U .

Let E = (B�, T, f) and E∗ = (Bm, T
−→
β , f∗) be evolution machines. By the

discussion above and the limitwise coarsenablity of evolution theorem one can
expect that for any approximately thematically uniform distribution p ∈ U (in-
cluding of course the uniform distribution over B�), the dynamics of E∗ when
initialized with Ξβp will approximate the projected dynamics of E when initial-
ized with p. As the bound δ is ‘low’, the fidelity of the approximation will be
‘high’.

Note that the constraint that fitness be low-variance schematically distributed,
which is required for this coarse-graining, is much weaker than the very strong
constraint of schematic fitness invariance (all genomes in each schema must have
the same value) which is required to coarse-grain IPGA dynamics in [20].

8 Conclusion

It is commonly assumed that the ability to track the frequencies of schemata
in an evolving infinite population across multiple generations under different
fitness functions will lead to better theories of adaptation for the simple GA.
Unfortunately tracking the frequencies of schemata in the naive way described
in the introduction is computationally intractable for IPGAs with long genomes.
A previous coarse-graining result [20] suggests that tracking the frequencies of a
family of low order schemata is computationally feasible, regardless of the length
of the genomes, if fitness is schematically invariant (with respect to the family of
schemata). Unfortunately this strong constraint on the fitness function renders
this result useless if one’s goal is to understand how GAs perform adaptation on
real-world fitness functions.

In this paper we developed a simple yet powerful abstract framework for
modeling evolutionary dynamics. We used this framework to show that the dy-
namics of an IPEA can be coarse-grained if it satisfies three abstract conditions.
We then used this result to argue that the evolutionary dynamics of an IPGA
with fitness proportional selection and uniform crossover can be coarse-grained
(with high fidelity) under a relatively coarse schema partitioning if the initial
distribution satisfies a constraint called approximate schematic uniformity (a
very reasonable condition), and fitness is low-variance schematically distributed.
The latter condition is much weaker than the schematic invariance constraint
previously required to coarse-grain selecto-mutato-recombinative evolutionary
dynamics.
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Appendix

Lemma 1. For any finite set X, and any metric space (Υ, d),let A : Υ → ΛX and let
B : X → [Υ → [0, 1]] be functions4 such that for any h ∈ Υ , and any x ∈ X, (B(x))(h) =
(A(h))(x). For any x ∈ X, and for any h∗ ∈ Υ , if the following statement is true

∀x ∈ X,∀εx > 0, ∃δx > 0,∀h ∈ Υ, d(h, h∗) < δx ⇒ |(B(x))(h) − (B(x))(h∗)| < εx

Then we have that

∀ε > 0, ∃δ > 0,∀h ∈ Υ, d(h, h∗) < δ ⇒ d(A(h),A(h∗)) < ε

This lemma says that A is continuous at h∗ if for all x ∈ X, B(x) is continuous at h∗.
Proof: We first prove the following two claims

Claim 1

∀x ∈ X s.t. (B(x))(h∗) > 0,∀εx > 0, ∃δx > 0, ∀h ∈ Υ,

d(h, h∗) < δx ⇒ |(B(x))(h) − (B(x))(h∗)| < εx.(B(x))(h∗)

This claim follows from the continuity of B(x) at h∗ for all x ∈ X and the fact that
(B(x))(h∗) is a positive constant w.r.t. h.

Claim 2 For all h ∈ Υ∑
x∈Xs.t.

(A(h∗))(x)>
(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| =
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

|(A(h))(x) − (A(h∗))(x)|

The proof of this claim is as follows: for all h ∈ Υ ,∑
x∈X

(A(h∗)(x)) − (A(h))(x) = 0

⇒
∑

x∈Xs.t.
(A(h∗))(x)>

(A(h))(x)

(A(h∗))(x) − (A(h))(x) −
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

(A(h))(x) − (A(h∗))(x) = 0

⇒
∑

x∈Xs.t.
(A(h∗))(x)>

(A(h))(x)

(A(h∗))(x) − (A(h))(x) =
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

(A(h))(x) − (A(h∗))(x)

⇒
∣∣∣∣ ∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

(A(h∗))(x) − (A(h))(x)

∣∣∣∣∣ =
∣∣∣∣∣ ∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

(A(h))(x) − (A(h∗))(x)

∣∣∣∣∣
4 For any sets X, Y we use the notation [X → Y ] to denote the set of all functions from

X to Y .
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⇒
∑

x∈Xs.t.
(A(h∗))(x)>

(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| =
∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

|(A(h))(x) − (A(h∗))(x)|

We now prove the lemma. Using claim 1 and the fact that X is finite, we get that
∀ε > 0, ∃δ > 0, ∀h ∈ [X → R] such that d(h, h∗) < δ,∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

|(B(x))(h∗) − (B(x))(h)| <
∑

x∈Xs.t.
(A(h∗))(x)>
(A(h))(x)

ε

2
.(B(x))(h∗)

⇒
∑

x∈Xs.t.
(A(h∗))(x)>

(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| <
∑

x∈Xs.t.
(A(h∗))(x)>

(A(h))(x)

ε

2
.(A(h∗))(x)

⇒
∑

x∈Xs.t.
(A(h∗))(x)>

(A(h))(x)

|(A(h∗))(x) − (A(h))(x)| <
ε

2
	


By Claim 2 and the result above, we have that ∀ε > 0, ∃δ > 0, ∀h ∈ [X → R] such
that d(h, h∗) < δ, ∑

x∈Xs.t.
(A(h))(x)>
(A(h∗))(x)

|(A(h))(x) − (A(h∗))(x)| <
ε

2

Therefore, given the two previous results, we have that ∀ε > 0, ∃δ > 0, ∀h ∈ [X → R]
such that d(h, h∗) < δ, ∑

x∈X

|(A(h))(x) − (A(h∗)(x))| < ε 	


Lemma 2. Let X be a finite set, and let T ∈ ΛX
m be a transmission function. Then

for any p′ ∈ ΛX and any ε > 0, there exists a δ > 0 such that for any p ∈ ΛX ,

d(p , p′) < δ ⇒ d(VT p , VT p′) < ε

Sketch of Proof: Let A : ΛX → ΛX be defined such that (A(p))(x) = (VT p)(x). Let
B : X → [ΛX → [0, 1]] be defined such that (B(x))(p) = (VT p)(x). The reader can
check that for any x ∈ X, B(x) is a continuous function. The application of lemma 1
completes the proof.

By similar arguments, we obtain the following two lemmas.

Lemma 3. Let X be a finite set, and let f : X → R
+ be a function. Then for any

p′ ∈ ΛX and any ε > 0, there exists a δ > 0 such that for any p ∈ ΛX ,

d(p , p′) < δ ⇒ d(Sfp , Sfp′) < ε

Lemma 4. Let X be a finite set, and let p ∈ ΛX be a distribution. Then for any
f ′ ∈ [X → R

+], and any ε > 0, there exists a δ > 0 such that for any f ∈ [X → R
+],

d(f , f ′) < δ ⇒ d(Sfp , Sf ′p) < ε
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Abstract. Evolutionary algorithms are randomized search heuristics
that are often described as robust general purpose problem solvers. It
is known, however, that the performance of an evolutionary algorithm
may be very sensitive to the setting of some of its parameters. A different
perspective is to investigate changes in the expected optimization time
due to small changes in the fitness landscape. A class of fitness func-
tions where the expected optimization time of the (1+1) evolutionary
algorithm is of the same magnitude for almost all of its members is the
set of linear fitness functions. Using linear functions as a starting point,
a model of a fitness landscape is devised that incorporates important
properties of linear functions. Unexpectedly, the expected optimization
time of the (1+1) evolutionary algorithm is clearly larger for this fitness
model than on linear functions.

1 Introduction

Evolutionary algorithms (EAs) belong to the broad class of general randomized
search heuristics. They are popular because they are easy to implement, easy to
apply to different kinds of problems, and because they are believed to be robust.
It is known, however, that the performance of evolutionary algorithms can be
very sensitive to relatively small changes in the algorithm or the settings of their
parameters. For example, Storch [15] proved that for some simple mutation-
based evolutionary algorithms even changes of the population size by only 1
can lead to enormous changes in the performance. This brittleness does not
hinge on the evolutionary algorithm to be complex in any way. Even for the
very simple (1+1) evolutionary algorithm seemingly small changes can lead to
extreme performance changes. Usually, in the (1+1) evolutionary algorithm, an
offspring replaces its parent if its fitness is at least as good. Changing this to
“is strictly better” can increase the expected optimization time from a small
polynomial to exponential [12]. Clearly, the choice of the mutation probability
can have an enormous influence, too [11].

Here, we take a different perspective. We consider the influence of seemingly
small changes of the fitness landscape on an EA’s performance. We concentrate
on changes that do not directly aim at changing the algorithm’s performance.
For example, this rules our moving the global optimum drastically [5]. We use
the expected optimization time as actual measure of performance. The analy-
sis of evolutionary algorithms with respect to the expected optimization time
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corresponds to the analysis of (randomized) algorithms with respect to the (ex-
pected) run time. Whereas the latter is a central aspect in the field of design and
analysis of algorithms, the former is still a relative knew branch of evolutionary
algorithm theory. It has been acknowledged as an approach of growing impor-
tance and has the potential of linking the EA community to the field of design
and analysis of (randomized) algorithms. Considering the past fifteen years of
analysis of the expected optimization time (beginning with the analysis of the
expected optimization time of the (1+1) evolutionary algorithm on OneMax

[14]) it becomes apparent that impressive progress has been made. In particular,
there are various analytical methods developed that greatly simplify the task
of analyzing the optimization time of evolutionary algorithms. Here, we present
asymptotically tight upper and lower bounds on the expected optimization time
with relatively simple proofs.

It is well known that the expected optimization time of the (1+1) EA is
O(n log n) for any linear function and Θ(n log n) for linear function that depend
on Θ(nε) bits (for any constant ε > 0) [4]. The lower bound Ω(n log n) follows
easily from a simple proof of this lower bound for a wide range of evolutionary
algorithms and fitness functions [10]. The first rigorous proof of the upper bound
was quite complicated. It is based on an abstract but flexible method that is in
general difficult to apply. It consists of abstracting from the actual evolutionary
algorithm and fitness function and considering a more abstract random process
that approximates crucial random variables of the true underlying random pro-
cess. Clearly, the errors introduced by the approximation have to be proven to
be bounded. This approach is similar in spirit to the approach using potential
functions in the classical analysis of algorithms and data structures [1]. Now, a
much simpler proof using drift analysis is known [9]. Drift analysis allows the
derivation of the expected optimization time by the analysis of the expected
change of some measure of progress in one generation. It is particularly strong
in situations where the expected change in a single generation remains more or
less unchanged during the complete run (like, e. g., for LeadingOnes [10]). For
such functions, drift analysis can be used to prove asymptotically tight upper
and lower bounds on the expected optimization time. But even for functions
where this expected change varies quite dramatically (like, e. g., for OneMax

[10]) it can lead to asymptotically tight upper bounds.
As we already mentioned, our object of interest is the (1+1) EA, a very simple

evolutionary algorithm. For the sake of completeness we give a precise definition
together with a short introduction of the notions and notations used in the next
section. The main part of the paper contains a discussion of common properties
of linear functions. We design a fitness landscape that can be described as a
pessimistic model of these common properties. We present a formal definition and
connect this model to the analysis of the (1+1) EA on linear functions (Sect. 3).
The analysis of this model leads to asymptotically tight lower and upper bounds
on the expected optimization time. We accompany these theoretically derived
asymptotic bounds by empirical data from actual runs. This yields some insight
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in the quality of the analytic results (Sect. 4). Finally, we summarize our findings
in the conclusions.

2 Definitions and Notation

The only evolutionary algorithm considered here is the so-called (1+1) EA. It
uses a population size of only 1, an offspring population size of only 1, and, as a
consequence, mutation only. The selection for replacement is the deterministic
plus-selection known from evolution strategies. It is sometimes considered as a
kind of randomized hill-climber [13]. Due to the standard bit mutation employed,
it is more accurately described as one of the simplest evolutionary algorithms.

Definition 1 ((1+1) evolutionary algorithm ((1+1) EA))

1. Initialization
t := 0. Choose xt ∈ {0, 1}n uniformly at random.

2. Mutation
y := xt. Independently for each bit in y, flip this bit with probability 1/n.

3. Selection
If f(y) ≥ f(xt) Then xt+1 := y Else xt+1 := xt

4. t := t + 1. Continue at line 2.

The (1+1) EA as described above can be used for maximization of any pseudo-
Boolean function f : {0, 1}n → IR. In the context of optimization, the most in-
teresting question is concerned with the amount of time needed. We call the
number of rounds the (1+1) EA needs to optimize f the optimization time T ,
i. e.,

T = min {t | f(xt) = max {f(x) | x ∈ {0, 1}n}} .

For a bit string x ∈ {0, 1}n we refer to the i-th bit in x by x[i]. Thus, we
have x = x[1]x[2] · · ·x[n]. We use the notation bi for the concatenation of i b-
bits (i ∈ IN0, b ∈ {0, 1}). For example, we have 1110000 = 1304. Often, we are
interested in the number of 1-bits in a bit string x. Clearly, this coincides with
the function value of x under the well-known fitness function OneMax since
OneMax(x) =

n∑
i=1

x[i].

Each pseudo-Boolean fitness function f : {0, 1}n → IR has a unique repre-
sentation as a polynomial f(x) =

∑
I⊆{1,2,...,n}

wI ·
∏
i∈I

x[i]. We call deg(f) :=

max{|I| | wI 
= 0} the degree of f . A fitness function f : {0, 1}n → IR is
called linear, if deg(f) = 1 holds. Clearly, linear functions can be written as

f(x) = w0 +
n∑

i=1

wi · x[i] with weights wi ∈ IR.

For our modeling, we define a partial order on bit strings extending the order
on bits in a natural way.

∀x, y ∈ {0, 1}n: x ≤ y :⇔ ∀i ∈ {1, . . . , n}: x[i] ≤ y[i]
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Clearly, this partial order has 0n as unique minimal element and 1n as unique
maximal element. We write x 
≤ y for the negation of x ≤ y. Since we are dealing
with a partial order this is different from y ≤ x.

3 Design and Analysis of a Pessimistic Fitness Model for
Linear Functions

We consider the (1+1) EA on linear functions f(x) = w0 +
n∑

i=1

wi. Due to the

selection employed, the additive constant w0 has no influence on the run of the
algorithm. Therefore, we assume w0 = 0 in the following. Since we want to derive
an upper bound on the expected optimization time, we may assume without loss
of generality that wi 
= 0 holds for all weights. For positions i with wi = 0 the
value of x[i] has no influence on the function value. Clearly, this can only decrease
the expected optimization time in comparison with non-zero weights.

Each linear function with only non-zero weights has a unique global optimum
x∗ ∈ {0, 1}n. Since we maximize f , we have x∗[i] = 1 for wi > 0 and x∗[i] = 0
for wi < 0. The (1+1) EA is completely symmetric with respect to the roles
of 0-bits and 1-bits. Therefore, we may exchange 0-bits and 1-bits at arbitrary
positions (and change wi to −wi accordingly) without changing the behavior of
the algorithm. Thus, we can w. l. o. g. restrict our attention to linear functions
with only positive weights, i. e., wi > 0 for all i > 0.

Linear functions with only positive weights have 1n as their unique global
optimum. For such functions one may measure the progress the (1+1) EA
makes on f by considering the random process OneMax(x0), OneMax(x1),
. . . on {0, 1, . . . , n}. This is a random sequence of numbers that (depending
on the specific linear function f used as a fitness function) may be increas-
ing and decreasing. But for all functions with 1n as global optimum (not only
linear ones), the optimization time coincides with the minimal index t such that
OneMax(xt) = n holds. If one was to use drift analysis and consider the num-
ber of 1-bits as measure, one would estimate the optimization time by finding
bounds on the expected change in the number of 1-bits in one step, i. e., giving
bounds on

E (OneMax(xi)−OneMax(xi−1) | xi−1) .

It is worth mentioning that the number of 1-bits in the current bit string may
be totally misleading as a measure of progress even for fitness functions that have
1n as their unique global optimum. Consider for example Plateau: {0, 1}n → IR.
The formal definition

Plateau(x) :=

⎧⎨⎩
2n if x = 1n

n + 1 if x ∈
{
1i0n−i | i ∈ {1, 2, . . . , n− 1}

}
n−OneMax(x) otherwise

reveals that the number of 1-bits is decreasing with increasing fitness values for
almost all points in the search space. Moreover, it is not difficult to see that even
when approaching the optimum on the plateau, i. e. xt = 1i0n−i, the expected
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change in the number of 1-bits is slightly negative. Nevertheless, the (1+1) EA
optimizes this function efficiently [12].

For linear functions with only positive weights, however, we expect the number
of 1-bits to be a quite accurate measure of progress. Consider randomized local
search (RLS), a search heuristic that works just like the (1+1) EA but flips
exactly one bit in each mutation step. If a 1-bit flips (becoming a 0-bit), the
fitness decreases and the offspring is rejected. If a 0-bit flips (becoming a 1-bit),
the fitness increases and the offspring replaces its parent. Thus, the expected
increase in the number of 1-bits in one step equals z/n for a bit string with
z 0-bits and is strictly positive for all non-optimal points in the search space.

Moreover, we get E (T ) ≤
n∑

z=1

n
z = O(n log n) as an immediate consequence. The

(1+1) EA, however, may flip several bits in a single mutation. But mutations
of single bits are the most likely mutations to cause changes. Therefore we may
expect that the (1+1) EA behaves quite similarly. And, in fact, we know that
RLS and the (1+1) EA both have expected optimization time Θ(n log n) on the
class of linear functions [3,4,9].

Clearly, there are infinitely many different linear functions with only positive
weights. Two extreme examples are OneMax and BinVal with BinVal(x) =
n∑

i=1

2n−ix[i]. While for OneMax there is a clear correspondence between fitness

values and the number of 1-bits, this is not the case for BinVal. In particular,
10n−1 and 01n−1 differ in function value by only 1, yet the difference in the
number of 1-bits equals n − 2. We see that for OneMax the number of 1-bits
can never decrease during a run whereas it may for BinVal.

In order to capture the different properties of linear functions we introduce
a random process that shares many properties with the (1+1) EA operating on
some linear fitness function but that is different in a certain way. We consider
this random process (denoted as PO-EA, short for partially ordered EA, since
its main ingredient is the partial ordering on {0, 1}n) in the following as an
abstraction of the (1+1) EA operating on linear functions with only positive
weights. Note that it is in some sense a pessimistic modeling.

Definition 2 (PO-EA)

1. Initialization
t := 0. Choose xt ∈ {0, 1}n uniformly at random.

2. Mutation
y := xt. Independently for each bit in y, flip this bit with probability 1/n.

3. Selection
If (y ≥ x) ∨ ((y 
≤ x) ∧ (OneMax(y) ≤ OneMax(x)))
Then xt+1 := y Else xt+1 := xt

4. t := t + 1. Continue at line 2.

We observe that there is no fitness function f : {0, 1}n → IR where the (1+1) EA
operates as PO-EA does. Consider, e. g., n = 4, x0 = 0101, x1 = 0010, x2 = 0110,
x3 = 0001, x4 = x0. For PO-EA and all t ∈ {0, 1, 2, 3} the transition from xt
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to xt+1 is done and, moreover, one of the inequalities is strict. The transition
from x0 to x1 decreases the number of 1-bits, the transition from x1 to x2 flips
exactly one 0-bit, the transition from x2 to x3 decreases the number of 1-bits
again and, finally, the transition from x3 to x4 flips exactly one 0-bit. And
yet we have x0 = x4 and the current population cycled. This is only possible
for the (1+1) EA with fitness functions if the function values are all equal.
But equal function values imply that all the transitions could occur in reversed
order. This, however, is clearly not the case here for PO-EA. In fact, none of
the four transitions can be directly reversed. In this sense PO-EA operates on
an abstract model of a fitness landscape inspired by linear functions but not on
a fitness landscape defined by any real fitness function.

Since PO-EA does not operate on a fitness function, we cannot really say that
it optimizes. However, there is a unique bit string, 1n, that cannot be replaced by
any offspring. Since this bit string can be reached in one single mutation from any
x ∈ {0, 1}n, we see that the Markov chain describing PO-EA has 1n as unique
absorbing state. This resembles optimization with the (1+1) EA and therefore
we call the expected absorption time the expected optimization time, too. So, the
number of steps PO-EA needs to reach 1n is called its optimization time.

Even though PO-EA acts differently than the (1+1) EA on any fitness func-
tion, it resembles the (1+1) EA on a linear fitness function with only positive
weights. If only 0-bits are mutated, y replaces its parent. If only 1-bits are mu-
tated, y is discarded. For these two “pure” cases PO-EA and the (1+1) EA
agree. For all other “mixed” cases, the offspring replaces its parent in PO-EA
only if the number of 1-bits does not increase. This is a worst case behavior
with respect to the number of 1-bits as measure of progress. It is worth men-
tioning that PO-EA is not overly pessimistic in the following sense. Consider the
(1+1) EA on BinVal and assume xt = 01n−1. In this specific situation, PO-EA
and the (1+1) EA behave exactly the same. Thus, there is a situation where
PO-EA models the (1+1) EA on a specific linear function accurately. Since it
is pessimistic in other situations and never optimistic, one may use PO-EA as
a model to derive an upper bound on the expected optimization time of the
(1+1) EA on linear functions. In fact, this is almost exactly the approach taken
by He and Yao in [7]. Due to an error in the calculations, the proof there is
not correct. This is “repaired” [8] by considering the (1+1) EA with a mutation
probability of only 1/(2n). Interestingly, this simplifies the proof dramatically.
But this “trick” is dissatisfactory since this is not the most recommended and
most often used mutation probability. The result, however, holds for the com-
mon mutation probability 1/n, too, but the proof is more involved [3,4,9]. In the
following section, we derive asymptotically tight lower and upper bounds on the
expected optimization time of PO-EA.

4 Analysis of PO-EA

The main tool for the analysis of PO-EA’s expected optimization time here is
drift analysis. Interestingly, different distance measures turn out to be useful for



60 T. Jansen

the lower and upper bound. When considering PO-EA as a pessimistic model
of the (1+1) EA on linear functions, the most pressing question is whether the
modeling is too pessimistic. This question can only be answered affirmatively by
means of a lower bound that is ω(n log n). Therefore, we start with the presen-
tation of a lower bound. We prove a lower bound of Ω(n3/2). This demonstrates
that any pessimistic approach that is equivalent to PO-EA cannot deliver an
asymptotically tight bound for the performance of the (1+1) EA on the class of
linear functions.

Theorem 1. The expected optimization time of PO-EA is Ω(n
√

n).

Proof. We want to apply drift analysis and use a very simple and straightfor-
ward distance measure: the number of 0-bits. We start with an upper bound on
the expected increase in the number of 1-bits in one generation. Let Δ(t) :=
OneMax(xt+1) − OneMax(xt). We present a simple derivation of the drift,
E (Δ(t) | OneMax(xt) = n− z), based on an inspection of all possible muta-
tions of xt. A mutation is described by the number of mutating 0-bits b0 and
the number of mutating 1-bits b1. Clearly, the probability of one such mutation
equals (

z

b0

)
·
(

n− z

b1

)
·
(

1
n

)b0+b1

·
(

1− 1
n

)n−b0−b1

and we see that

z∑
b0=0

n−z∑
b1=0

(
z

b0

)
·
(

n− z

b1

)
·
(

1
n

)b0+b1

·
(

1− 1
n

)n−b0−b1

= 1

holds since we are dealing with a distribution. The contribution of one such mu-
tation to E (Δ(t) | OneMax(xt) = n− z) equals b0− b1 if the offspring replaces
its parent and 0 otherwise. We know that the offspring replaces its parent if
either only 0-bits flip, i. e., b1 = 0, or the number of flipping 1-bits is at least
as large as the number of flipping 0-bits, i. e., b0 ≤ b1. Since mutations where
the offspring replaces its parent but b0 = b1 holds have a contribution of 0 to
E (Δ(t) | OneMax(xt) = n− z), the following holds when we adopt the conven-
tion that sums where the lower summation bound exceeds the upper summation
bounds contribute 0.

E (Δ(t) | OneMax(xt) = n− z) =

(
z∑

b0=1

b0

(
z

b0

)(
1
n

)b0 (
1− 1

n

)n−b0
)

+
z∑

b0=1

n−z∑
b1=b0+1

(b0 − b1)
(

z

b0

)
·
(

n− z

b1

)
·
(

1
n

)b0+b1

·
(

1− 1
n

)n−b0−b1

We observe that

z∑
b0=1

b0∑
b1=1

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

≥ 0
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holds. Thus, we obtain an upper bound if we consider the following.

z∑
b0=1

n−z∑
b1=0

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

It is easy to see that

z∑
b0=1

n−z∑
b1=0

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

=
z∑

b0=1

n−z∑
b1=0

b0

(
z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

−
z∑

b0=1

n−z∑
b1=0

b1

(
z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

=
z∑

b0=0

n−z∑
b1=0

b0

(
z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

−
z∑

b0=0

n−z∑
b1=0

b1

(
z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

+
n−z∑
b1=0

b1

(
n− z

b1

)(
1
n

)b1 (
1− 1

n

)n−b1

=
z

n
− n− z

n
+

n−z∑
b1=0

b1

(
n− z

b1

)(
1
n

)b1 (
1− 1

n

)n−b1

holds, since

z∑
b0=0

n−z∑
b1=0

b0

(
z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

equals the expected number of mutating 0-bits in a bit string with exactly z
0-bits which is z/n and, analogously,

z∑
b0=0

n−z∑
b1=0

b1

(
z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

equals the expected number of mutation 1-bits in a bit string with exactly z
0-bits (and, therefore, n− z 1-bits) which is (n− z)/n. The expected values are
easy to see since the random variables are obviously binomially distributed with
parameters z, 1/n and n− z, 1/n respectively.

We have
n−z∑
b1=0

b1

(
n− z

b1

)(
1
n

)b1 (
1− 1

n

)n−b1
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=
(

1− 1
n

)z n−z∑
b1=0

b1

(
n− z

b1

)(
1
n

)b1 (
1− 1

n

)n−z−b1

and consider a bit string of length n−z that is subject to mutation with mutation
probability 1/n. Clearly, the expected number of mutation bits equals

n−z∑
b1=0

b1

(
n− z

b1

)(
1
n

)b1 (
1− 1

n

)n−z−b1

=
n− z

n

and we obtain

z

n
− n− z

n
+
(

1− 1
n

)z
n− z

n
=

1
n
·
(

2z − n +
(

1− 1
n

)z

(n− z)
)

for our upper bound. Application of the binomial theorem yields

1
n
·
(

2z − n +
(

1− 1
n

)z

(n− z)
)

=
1
n

(
2z − n + (n− z)

(
1− z

n
+

z(z − 1)
2n2

+
z∑

i=3

(
z

i

)(
− 1

n

)i
))

= Θ

(
z2

n2

)
for our upper bound.

For the derivation of a lower bound we want to subtract from our upper bound
what we added to the exact expectation. So, we see that

E (Δ(t) | OneMax(xt) = n− z)

=
1
n
·
(

2z − n +
(

1− 1
n

)z

(n− z)
)

−
z∑

b0=1

b0−1∑
b1=1

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

holds. We have
z∑

b0=1

b0−1∑
b1=1

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

=
z∑

b0=2

b0−1∑
b1=1

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

=
z(n− z)

n3

(
1− 1

n

)n−3

+
z∑

b0=3

b0−1∑
b1=1

(b0 − b1)
(

z

b0

)(
n− z

b1

)(
1
n

)b0+b1 (
1− 1

n

)n−b0−b1

= o

(
z2

n2

)
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and can conclude that

E (Δ(t) | OneMax(xt) = n− z) = Θ

(
z2

n2

)
− o

(
z2

n2

)
holds. Thus, the bound Θ(z2/n2) is tight.

Now we consider PO-EA. We neglect the first steps after random initialization
and start to pay attention when the number of 0-bits is decreased to

√
n for the

first time. As long as the number of 0-bits is O(
√

n), the drift is bounded above
by O(1/n). Moreover, the probability to increase the number 0-bits is smaller
than the probability to decrease the number of 0-bits. It is easy to see that the
probability that in this situation the number of 0-bits increases to ω(

√
n) is very

small. As long as this does not happen, the process has drift O(1/n) and initial
distance to the optimum of

√
n. This yields a lower bound of Ω(n

√
n) for the

expected optimization time. ��

We see that PO-EA is significantly slower than the (1+1) EA on any linear
function. The finding that the expected change in the number of 0-bits in one
generation with currently z 0-bits is Θ(z2/n2) may lead us to believe that the
actual expected optimization time is Θ(n2). This however, is not correct as the
following theorem shows. In fact, the lower bound from Theorem 1 is asymptot-
ically tight.

Theorem 2. The expected optimization time of PO-EA is Θ(n
√

n).

Proof. We use the result on the expected change in the number of 0-bits from the
proof of Theorem 1 as a starting point. When the current search point contains z
0-bits, the expected change in the number of 0-bits in one generation is Θ(z2/n2).
We can use this result to obtain an upper bound on the expected time needed
to decrease the number of 0-bits by at least 1. Clearly, the distance that we need
to overcome is 1. If we increase the number of 0-bits in this process, the drift
is only increased. Thus, Ω(z2/n2) is a lower bound on the drift and we obtain
O(n2/z2) as upper bound on the expected time.

This reasoning can easily be extended to an upper bound. We simply add up
all these expected waiting times for z ∈ {1, 2, . . . , n} and obtain

n∑
z=1

Θ

(
n2

z2

)
= Θ(n2)

as upper bound. This, however, is clearly larger than the upper bound we want
to prove. It is worth mentioning, however, that we can generalize this result in
the following way. If we are interested in the first point of time when the number
of 0-bits is decreased to at most z′, we only need to sum up all expected waiting
times for z ∈ {z′ + 1, z′ + 2, . . . , n}. Then we obtain

n∑
z=z′+1

Θ

(
n2

z2

)
= Θ(n2/z′)

as upper bound for this waiting time.



64 T. Jansen

Using the number of 0-bits as distance measure, we cannot obtain an asymp-
totically tight upper bound on PO-EA’s expected optimization time. In or-
der to apply drift analysis, we use a different distance measure here, namely
d(x) :=

√
n−OneMax(x).

We use drift analysis and consider a measure of distance d that depends on
OneMax(x), only. Thus, we may restrict ourselves to some d̃: {0, 1, . . . , n} →
IR+

0 with d̃(n−OneMax(x)) = d(x). Therefore, we have d̃(z) = 0⇔ z = 0 and
d̃ strictly increasing with z. Since we use d(x) =

√
n−OneMax(x) as measure

for the distance to the global optimum, we have d̃(z) =
√

z. Since the value of
d̃ can easily be computed when x ∈ {0, 1}n is known, we allow ourselves to use
the notation d̃(x) when we are really referring to d̃(n−OneMax(x)).

We need a lower bound on the expected change of d̃ in one generation. Let

1expr denote the indicator function such that 1expr =
{

1 if expr is true
0 otherwise holds.

Then we have

E
(
d̃(xt)− d̃(xt+1) | d̃(xt) = z

)
=

z∑
b0=0

n−z∑
b1=0

((
z

b0

)
·
(

n− z

b1

)
·
(

1
n

)b0+b1

·
(

1− 1
n

)n−b0−b1

·1(b1=0<b0)∨(b1>b0>0) ·
(
d̃(z)− d̃(z + b1 − b0)

))
since this mirrors all ways of mutating b0 0-bits and b1 1-bits and sums up all

differences that are accepted by PO-EA. Adopting the notation that
b∑

i=a

f(i) = 0

holds for a > b, we obtain

E
(
d̃(xt)− d̃(xt+1) | d̃(xt) = z

)
=
(

1− 1
n

)n

·
z∑

b0=1

((
z

b0

)
·
(

1
n− 1

)b0

·
(
√

z −
√

z − b0 +
n−z∑

b1=b0+1

(
n− z

b1

)
·
(

1
n− 1

)b1

·
(√

z −
√

z + b1 − b0

)))
by dividing the double-sum into two sums, one for the case of only mutating
0-bits, the other for the case of mutating 0-bits and 1-bits.

We consider the differences of square roots
√

z −
√

z − b with 0 ≤ b ≤ z.
Clearly,

√
z −

√
z − b =

b√
z
· 1
1 +
√

1− b/z

holds and b/(2
√

z) ≤
√

z −
√

z − b ≤ b/
√

z follows. Moreover, we have
lim

z→∞
(√

z −
√

z − b
)

= b/ (2
√

z) for any b with b = o(z).
We want to estimate

E
(
d̃(xt)− d̃(xt+1) | d̃(xt) = z

)
=
(

1− 1
n

)n

·
z∑

b0=1

((
z

b0

)
·
(

1
n− 1

)b0
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·
(
√

z −
√

z − b0 +
n−z∑

b1=b0+1

(
n− z

b1

)
·
(

1
n− 1

)b1

·
(√

z −
√

z + b1 − b0

)))
and are content with an asymptotic result. Thus, we may safely ignore the term
(1− 1/n)n. This leads us to the following calculations.

z∑
b0=1

((
z

b0

)
·
(

1
n− 1

)b0

·
(
√

z−
√

z − b0−
n−z∑

b1=b0+1

(√
z + b1 − b0 −

√
z
)
·
(

n− z

b1

)
·
(

1
n− 1

)b1
))

=
z∑

b0=1

((
z

b0

)
·
(

1
n− 1

)b0

·
(

b0√
z
· 1
1 +
√

1− b0/z
−

n−z∑
b1=b0+1

b1 − b0√
z

· 1
1 +
√

1 + (b1 − b0)/z
·
(

n− z

b1

)
·
(

1
n− 1

)b1
))

=
1√
z
·

z∑
b0=1

((
z

b0

)
·
(

1
n− 1

)b0

·
(

b0

1 +
√

1− b0/z
−

n−z∑
b1=b0+1

b1 − b0

1 +
√

1 + (b1 − b0)/z
·
(

n− z

b1

)
·
(

1
n−1

)b1
))

=
1√
z
·

z∑
b0=1

((
z

b0

)
·
(

1
n− 1

)b0

·

⎛⎝ b0

1 +
√

1− b0/z
−

n−z−b0∑
j=1

j

1 +
√

1 + j/z
·
(

n− z

b0 + j

)
·
(

1
n− 1

)b0+j
⎞⎠⎞⎠

Using
(
a
b

)
≤ ab/b! to obtain an estimate we get

1√
z
·

z∑
b0=1

((
z

b0

)
·
(

1
n− 1

)b0

·

⎛⎝ b0

1 +
√

1− b0/z
−

n−z−b0∑
j=1

j

1 +
√

1 + j/z
· 1
(b0 + j)!

·
(

n− z

n− 1

)b0+j
⎞⎠⎞⎠

as lower bound. To simplify things let us assume for the moment that

b0

1 +
√

1− b0/z
−

n−z−b0∑
j=1

j

1 +
√

1 + j/z
· 1
(b0 + j)!

·
(

n− z

n− 1

)b0+j

= Ω(1) (1)

holds. Then we see that a lower bound of order

Ω

(
1√
z
·

z∑
b0=1

((
z

b0

)
·
(

1
n− 1

)b0
))

= Ω

(√
z

n

)
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follows. Without making use of our assumption (1) we obtain

Ω

⎛⎝√z

n
·

⎛⎝ 1
1 +
√

1− 1/z
−

n−z−1∑
j=1

j

1 +
√

1 + j/z
· 1
(j + 1)!

·
(

n− z

n− 1

)j+1
⎞⎠⎞⎠

= Ω

⎛⎝√z

n
·

⎛⎝ 1
1 +
√

1− 1/z
− 1

1 +
√

1 + 1/z
·
(
1− z

n

)
·

∞∑
j=1

j

(j + 1)!

⎞⎠⎞⎠
= Ω

(√
z

n
·
(

1
1 +
√

1− 1/z
− 1

1 +
√

1 + 1/z
·
(
1− z

n

)))

= Ω

(√
z

n
·
(

1
z

+
z

n

))
= Ω

(
1

n
√

z
+

z
√

z

n2

)
as lower bound. This expression becomes asymptotically minimal for z = Θ(

√
n)

leading us to Ω
(
n−5/4

)
as lower bound. Together with the upper bound O(

√
n)

on the maximal distance this leads to an upper bound of O(n7/4) for the expected
optimization time by drift analysis which is still not tight.

Now we can remember the result we obtained at the beginning of this proof
using the number of 0-bits as distance measure. We have that the expected time
needed to decrease the number of 0-bits to at most

√
n for the first time is

bounded above by O(n2/
√

n) = O(n3/2). Then, now using
√

n−OneMax(x)
as distance measure again, there is a distance of n1/4 to the global optimum. To-
gether with Ω(n−5/4) as lower bound on the drift we obtain O(n6/4) = O(n3/2)
as upper bound on the expected optimization time as claimed. ��

One may wonder why
√

n−OneMax(x) is the appropriate distance measure
for a tight upper bound. In fact, it is not – it is merely one of infinitely many
appropriate distance measures that all lead to the same upper bound. All we
exploited in the proof is that

√
n−OneMax(x) is concave. One can generalize

the proof of Theorem 2 and show the same upper bound using any distance
measure (n−OneMax(x))ε with any constant 0 < ε < 1 [16].

We now know the expected optimization time of PO-EA, it is Θ(n3/2). This,
however, is an asymptotic result. The result itself does not tell us anything about
multiplicative constants or terms of smaller order influencing the actual expected
optimization time considerably. It does not even tell us whether it is valid for
small values of n. We know from the proofs, however, that we do not need to
have particularly large values of n to have our arguments be valid. Still it makes
sense to consider empirical run times from actual runs to give us at least some
intuition about the details that were lost in our asymptotic calculations.

Here, we present results of a straightforward implementation of the PO-EA.
We count the number of rounds the algorithm performs before reaching the
global optimum 1n. We present averages over 100 independent runs for each
value of n together with their 95% confidence intervals. The averages are plotted
as empty circles in Fig. 1, the confidence intervals as small bars. Values of n
used are n ∈ {10, 20, 30, . . . , 4490}.
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.319n7/4

.041n2

Fig. 1. Results of runs together with fitted curves

In order to obtain a more complete picture we compare this empirical data
with Θ(n log n), the expected optimization time of the (1+1) EA on a linear
function, with Θ(n3/2), the expected optimization time of PO-EA, with Θ(n7/4),
the slightly simpler upper bound obtained by using drift analysis with distance
measure

√
n−OneMax(x) alone, and with Θ(n2), the upper bound obtained

by using drift analysis with the number of 0-bits as distance measure. Since we
need to plot actual functions, we decide to plot the functions c1 ·n log n, c2 ·n3/2,
c3 · n7/4, and c4 · n2 with some constant factors c1, c2, c3, c4 ∈ IR+. To allow for
a fair comparison we obtain the fixed coefficient c1, . . . , c4 by using gnuplot’s fit
(gnuplot in version 4.0). We list the actual functions plotted together with RMS
(root mean square) of residuals in Table 1.

Table 1. Functions plotted in Fig. 1 together with the RMS of residuals

Function RMS of Residuals

17.618n log n 42491.6

2.466n3/2 18288.6

.319n7/4 28370.2
.041n2 45034.1

The results from Table 1 clearly show that 2.466n3/2 fits the empirical data
best. Since the expected optimization time actually is Θ(n3/2), this could be
expected. We observe, however, that this information cannot be obtained by
heuristic arguments and empirical data, alone. If we only had an upper bound of
O(n7/4), the empirical data may lead us to believe that this is the actual expected
optimization time since the curve of .319n7/4 fits the data points reasonably well.
This demonstrates the usefulness of theoretical results.
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5 Conclusions

Considering the (1+1) EA on linear functions, we devised an abstract model of
the fitness landscapes defined by linear functions. The model is pessimistic with
respect to the number of 1-bits. Yet it is exact in some situations. In spite of the
similarities to linear functions, the expected optimization time is significantly
larger.

It is interesting to observe how brittle the (1+1) EA can be. The difference be-
tween PO-EA and the (1+1) EA on linear functions seems to be quite marginal.
The most probable mutations are mutations of single bits. For these type of
mutations, PO-EA does not differ from linear functions at all. Even if we take
mutations of at most two bits into account, the expected optimization time for
PO-EA is Θ(n log n). And yet the mutations of several bits simultaneously are
able to increase the running time by a factor of Θ(n/ log n).

In order to strengthen analytical results on the optimization time it is desir-
able to see what kind of modifications to the fitness landscape have non-zero
yet bounded influence on an EAs performance. This is different from describing
modifications of fitness functions that do not have any influence on the opti-
mization time at all [2]. Allowing some real influence on an EAs performance
and yet bounding the increase in the expected optimization time introduced by
this modification is a more difficult task. Here, one non-trivial example has been
presented.
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Abstract. In this paper, the behavior of intermediate (μ/μI , λ)-ES with self-
adaptation is considered for two classes of ridge functions: the sharp and the
parabolic ridge. Using a step-by-step approach to describe the system’s dynamics,
we will investigate the underlying causes for the different behaviors of the ES on
these function types and the effects of intermediate recombination.

1 Introduction

Evolution strategies (ES) are population-based search heuristics that move through the
search space by means of variation, i.e. mutation and recombination, and selection.
Their performance strongly depends on the choice of the mutation strength. During an
optimization run, the mutation strength must be continuously adapted to allow the ES to
travel with sufficiently speed. To this end, several methods have been developed – e.g.
Rechenberg’s well-known 1/5th-rule [1] or the cumulative step-size adaptation (CSA)
and covariance matrix adaptation (CMA) of Ostermeier, Gawelczyk, and Hansen e.g.
[2,3].

In this paper, we will concentrate on the self-adaptation mechanism of the muta-
tion strength introduced by Rechenberg [1] and Schwefel [4]. Here, the adjustment of
the mutation strength is left to the ES itself. The mutation strength becomes a part of
the individual’s genome – undergoing variation and selection processes. The mutation
strengths that lead to individuals with high fitness values “survive” and can be passed
to the next generation.

Theoretical analyses fall into three main approaches: The first considers the Markov
chain that results from the ES’s dynamics [5,6]. The second approach tries to answer
the question of convergence or divergence and studies induced martingale or super-
martingales, respectively [7,8,9,10]. The third [11], applies a step-by-step approach –
extracting the important features of the stochastic process and deriving approximate
equations. Most of the work focuses on the sphere model, i.e., on functions that in- or
decrease monotonically with the distance to the optimizer. Ridge functions can be seen
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as an extension of the sphere. Using an orthogonal representation [12], they comprise
functions of the form

F (y) = y1 + d
( N∑

i=2

y2
i

)α/2 =: x− dRα (1)

where x := y1 denotes the position on the ridge axis, whereas R := ‖(y2, . . . , yN )T‖
is the (N − 1)-dimensional distance to the ridge. Ridge functions contain a sphere
model weighted with parameter d and a linear component. On the first sight, progress
is possible by minimizing the sphere and by maximizing the linear part which might be
problematic when using isotropic mutations.

The performance of evolution strategies on this function class was already addressed
e.g. in [13,12] without considering self-adaptation. The first theoretical analysis of
adaptive ES on the ridge function class considering the CSA-ES on the sharp (α = 1)
and parabolic ridge (α = 2) was sketched in [14]. It was found that ridge functions
resemble a noisy sphere model which allows for an application of the theory developed
there. In [15] a CSA-ES on the noisy parabolic ridge was considered. Three types of
noise were analyzed which differed in the increase of the noise strength as a function
of the distance to the ridge axis.

In this paper, we will make use of the approach introduced in [11] and consider the
self-adaptation behavior of ES on the ridge function class – concentrating on the sharp
and parabolic ridge. The ES considered here are intermediate (μ/μI , λ)-ES with self-
adaptation of a single mutation strength. The offspring are thus generated according to:

1. Compute the mean 〈σ〉 = 1
μ

∑μ
m=1 σm of the mutation strengths of the μ individ-

uals of the parent population
2. Compute the centroid 〈y〉 = 1

μ

∑μ
m=1 ym of the object vectors of the μ individuals

of the parent population
3. For all offspring l ∈ {1, . . . , λ}:

(a) To derive the new mutation strength: Mutate the mean 〈σ〉 according to σl =
〈σ〉ζ where ζ is a random variable which should fulfill E[ζ] ≈ 1 (see [16] for a
discussion of this and further requirements). Typical choices of ζ’s distribution
include the log-normal distribution, derivatives of normal distributions, or a
two-point distribution [17].

(b) Generate the object vector yl according to yi = 〈yi〉+σlN (0, 1) where yi is the
vector’s ith component and N (0, 1) stands for a standard normally distributed
random variable.

Afterwards, the μ best offspring are chosen – according to their fitness. They (along with
their mutation strengths) become the parents of the next generation. We will consider
the log-normal operator to mutate the mutation strength. Therefore, the random variable
ζ is given by ζ = eτN (0,1) where τ is called the learning parameter.

This paper is structured as follows. First, we will describe how the ES’s dynamics
may be modeled. Afterwards, we will introduce the progress measures required be-
fore analyzing the behavior of self-adaptive intermediate ES on the sharp and parabolic
ridge.
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1.1 Modeling the Evolutionary Dynamics: The Evolution Equations

Due to the form of the fitness function which can be given as f(x, R) = x−dRα, three
variables are of interest. The first is the x-component denoting the change on the ridge
axis. The second is the component R measuring the distance to the ridge. The third
is the mutation strength ς . Their one-generational change is described by difference
equations (called evolution equations)

x(g+1) = x(g) + E[x(g+1) − x(g)|(R(g), x(g), 〈ς(g)〉)] +R(g)
x

=: x(g) + ϕx(R(g), x(g), 〈ς(g)〉) +R(g)
x (2)

R(g+1) = R(g) + E[R(g+1) −R(g)|(R(g), x(g), 〈ς(g)〉)] +R(g)
R

=: R(g) − ϕR(R(g), x(g), 〈ς(g)〉) +R(g)
R (3)

〈ς(g+1)〉 = 〈ς(g)〉
(
1 + E

[ 〈ς(g+1)〉 − 〈ς(g)〉
〈ς(g)〉 |(R(g), x(g), 〈ς(g)〉)

])
+R(g)

ς

=: 〈ς(g)〉
(
1 + ψ(R(g), x(g), 〈ς(g)〉)

)
+R(g)

ς (4)

which consist of a deterministic part, i.e., the (conditional) expected change and a per-
turbation part R covering the random fluctuations. Note, in the case of the mutation
strength a multiplicative change is considered. In a first analysis, we will neglect the
perturbation parts of the evolution equations. Therefore, it remains to determine the con-
ditional expected changes of the state variables. In the case of the x- and R-variables,
these are the progress rates ϕx and ϕR. In the case of the mutation strength, we have to
determine the so-called self-adaptation response (SAR) ψ denoting the expected rela-
tive change. To simplify the notations, we will set σ := 〈ς(g)〉, R := R(g), r := R(g+1),
x := x(g+1), and X := x(g) unless the dependence on the generation number g is ex-
plicitly needed. Similarly, we will not denote the dependency of the expected changes,
i.e., the progress rates and the SAR, on the previous values.

2 Preliminaries

In this section, we will give a short sketch of the derivation of the progress measures
required. More detailed versions can be found in the appendices.

In the case of the progress rates, we follow a similar way as in [15] and [12]. A
main point concerns the derivation of a probability density function (pdf) which de-
scribes the fitness or quality change by a mutation. The new vector of an offspring
consists of a component y1 (i.e., along the axis) and of a perpendicular component
r = (0, y2, . . . , yN )T. Its length r = ‖r‖ denotes the distance to the ridge. As in
the case of the sphere model, this (N − 1)-dimensional r can be decomposed into
r = R − zReR + h, with zR the component of the mutation vector in −R-direction
and h the part perpendicular to R. The second important point is the linearization of
the distance r in its components which allows further treatment in the case of the sharp
ridge. The feasibility of the approach depends on the assumption that the change of the
distance in one generation is small (see [12]).
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All progress measures –the progress rates as well as the SAR– give the change of the
centroid or mean, respectively in the case of the SAR, of the state variables x, R, and ς
of the μ best offspring. The offspring l are chosen according to their fitness values F (yl)
or to the fitness (quality) change Ql := F (yl) − F (〈y〉) which is more convenient for
the calculations. Ordering the λ offspring after non-decreasing values of Ql, we obtain
the usual ordering Q1:λ ≤ . . . ≤ Qλ:λ of order statistics [18], where Qm:λ denotes the
mth smallest of λ trials. Note, for the progress measures the quality change is not used
directly but we need the distributions of the first component x, distance r, and mutation
strength ς which are associated with the mth highest quality change. Therefore, the
so-called induced order statistics is applied [19].

The progress rate ϕx describing the expected one-generation change in ridge direc-
tion is defined as

ϕx := E[x(g+1) − x(g)]. (5)

It gives the expected change of the first component of the centroid vector. Using Lemma
1 of Appendix B the progress rate can be easily determined (see p. 88). Using the
normalization ϕ∗

x = Nϕx and letting N →∞

ϕ∗
x(σ∗, R) =

σ∗√
1 + q2

cμ/μ,λ (6)

with

q := dαRα−1 (7)

is obtained. The coefficient cμ/μ,λ in (6) is a special case of the generalized progress
coefficients [20, p.172]

eα,β
μ,λ = (λ − μ)

(
λ

μ

)
1

√
2π

α+1

∫ ∞

−∞
tβe−

(α+1)t2

2 Φ(t)λ−μ−1
(
1− Φ(t)

)μ−α dt (8)

with cμ/μ,λ := e1,0
μ,λ. We will restrict the analysis to N � 1. Therefore N − 1 ≈ N ,

and as in (6) the normalizations ς∗ = Nς and ϕ∗
x = Nϕx are used.

The progress rate ϕ∗
x (6) has no loss term and increases linearly with the mutation

strength. Thus, the expected progress on the ridge axis is always positive but goes to
zero for ς∗ → 0 or q →∞. As can be seen, the progress rate is influenced by the ridge
function itself, more specifically, it is influenced by the gradient vector

∇f(x, R) =
(

1
−αdRα−1

)
. (9)

The expression 1/
√

1 + (αdRα−1)2 which appears in the progress rate (6) equals the
cosine of the angle between the gradient and the ridge axis. With the exception of the
sharp ridge where the angle is constant, the farer the ES is away from the ridge the
steeper the slope of gradient, the higher the angle and the smaller the cosine and with it
the progress rate parallel to the axis.
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The progress rate of the R-evolution is defined by

ϕR := E[R− r] (10)

where r denotes the length of the (N − 1)-dimensional centroid vector of the μ best
offspring or the next parental population, respectively. As shown in [20] and used in
Appendix B, the new vector r can be written as the sum of two orthogonal vectors, the
first denoting the change with respect to the old centroid vector R, the other perpendic-
ular to that. The new vector can thus be given by r = R − 〈zR〉eR + 〈h〉, where 〈h〉
denotes the component perpendicular to R and eR := R/R. Since r = ‖r‖ =

√
rTr,

the progress rate (10) can also be written as

ϕR := E[R−
√

(R − 〈zR〉)2 + 〈h〉2]. (11)

As shown in Appendix B, this decomposition can be used to derive

ϕ∗
R(σ∗, R) =

qσ∗√
1 + q2

cμ/μ,λ −
σ∗2

2Rμ
(12)

for N →∞ which will be used as an approximate equation for finite N . The parameter
q is denotes again q := dαRα−1, (7). The progress rate is similar to that on the sphere
model [20] – with a loss part which is a result of the perpendicular component of the
r = (y2, . . . , yN )T-vector (see Appendix B). The ridge factor enters the equation over
the q-values (7) and influences the gain but not the loss part of the progress rate. The
influence is similar to the progress rate of the x-evolution. This time the influence of
the gradient (9) at R and x(g) enters over the sine of the angle between the vector and
the x-axis. For increasing distances to the ridge, the sine approaches one and the angle
π/2. More and more weight is put on the gain part, i.e. on the part that stems from the
mutation vector components pointing in R-direction. For decreasing distances, the sine
and the angle go to zero and the gain part looses influence. The exception is again the
sharp ridge with a constant angle.

Both progress rates (6) and (12) are obtained for the case of τ = 0 and therefore only
applicable for small values of τ .

The self-adaptation response (SAR) denotes the expected relative change of the mu-
tation strength during one generation

ψ(σ∗, X, R) =
1
μ

μ∑
m=1

E
[ ς∗m;λ − σ∗

σ∗
]

=
∫ ∞

0

( ς∗ − σ∗

σ∗
)
pm;λ(ς∗, σ∗, X, R) dς∗ (13)

where pm;λ(ς∗) denotes the density function of the mutation strength of the mth best
offspring. It should be noted that a closed analytical derivation of the SAR does not ap-
pear feasible. Therefore several simplifications have to be introduced. One of the most
important points is to restrict the analysis to τ � 1 provided that the log-normal oper-
ator is used. The learning parameter is generally chosen to scale with 1/

√
N . Provided

that the search space dimensionality is sufficiently high, this should not be a severe
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restriction. The reason for requiring τ � 1 is due to the finding that it is possible to
simplify several integral expressions introducing an error of orderO(τ2) which can be
assumed to be negligible provided τ is sufficiently small (note, due to further integra-
tions the error term will finally be of order O(τ4)). The derivation of the SAR follows
the approach taken in [20]. The first point is to find an expression for the probability
density function (pdf) of the mth best offspring. Afterwards it remains to solve the re-
sulting integrals and to cope with the sum in (13) (see Appendix C.1). We obtain for
N →∞ the SAR

ψ∞(σ∗) = τ2

(
1
2

+ e1,1
μ,λ − cμ/μ,λ

σ∗

R

q√
1 + q2

)
+O

(
τ4
)

(14)

with q := dαRα−1 (7). The SAR has a linear loss part – again influenced by the distance
to the ridge over the fraction and the sine of the slope angle of the gradient – and a
constant positive component. Figure 1 compares (14) with the results of experiments
for N = 30. Some deviations can be observed – especially for larger σ∗, but generally
the prediction quality appears to be sufficient.

Equations (6), (12), and (14) describe the expected changes of the state variables
under the conditions of τ � 1 and N → ∞. As mentioned, they serve as approximate
formulae in finite dimensional search spaces. So, now we are in the position to analyze
the expected changes on the one hand, i.e., under which conditions a positive or negative
change is expected, and on the other hand to take a closer look at the ES’s evolution if
the random fluctuations are neglected.

1 2 3 4 5

-3

-2

-1

1

2

σ∗

ψ/τ2

1 2 3 4 5
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2
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ψ/τ2

a) N = 30, d = 0.2, sharp ridge b) N = 30, d = 0.2, parabolic ridge

Fig. 1. The first-order SAR (Eq. (14)) on the sharp and parabolic ridge for some (μ/μ, 10)-
ES. Shown are the results for μ = 1 (black, stars), μ = 2 (blue, diamonds), and μ = 3 (red,
triangles). The distance to the ridge was set to R = 1. Each data point was obtained by sampling
over 100, 000 one-generation experiments.

3 Self-adaptation on the Sharp and Parabolic Ridge

As observed in numerical experiments, self-adaptive ES may experience problems on
ridge functions. Especially on the sharp ridge, they are known to converge prematurely
– optimizing only the sphere-part of the model (see e.g. [21]). Let us consider the evo-
lution equations (with ς∗ = ςN , ϕ∗

R = NϕR, and ϕ∗
x = Nϕx)



76 S. Meyer-Nieberg and H.-G. Beyer

x(g+1) = x(g) +
1
N

ϕ∗
x(R(g), 〈ς∗(g)〉)

R(g+1) = R(g) − 1
N

ϕ∗
R(R(g), 〈ς∗(g)〉)

〈ς∗(g+1)〉 = 〈ς∗(g)〉(1 + ψ(R(g), 〈ς∗(g)〉)
)

(15)

with the SAR (14) and progress rates (6) and (12) obtained for N → ∞. Note, this is
only a very rough approximation of real systems with small N and small population
sizes. The results obtained by analyzing (15) must therefore be compared with exper-
iments. We will start by considering the system in R and ς∗. Note, according to (15)
there is no feedback of the x-evolution on these two state variables.

3.1 The System in ς∗ and R

Let us start with the evolution of the mutation strength. The present mutation strength
is increased if the value of the SAR (14) is positive and decreased otherwise. The SAR
is a monotonously decreasing function in ς∗ with only one zero ς∗ψ0

which depends on

the ridge factor q = dαRα−1 (7) and R = R(g)

ς∗ψ0
= R

1/2 + e1,1
μ,λ

cμ/μ,λ

√
1 + α2d2R2α−2

α2d2R2α−2

= Rς∗sph
ψ0

√
1 + α2d2R2α−2

α2d2R2α−2
. (16)

The zero (16) only differs from the normalized (with respect to N ) zero of the SAR for
the sphere model

ς∗sph
ψ0

:= R
1/2 + e1,1

μ,λ

cμ/μ,λ
. (17)

(see [22]) by the square root which equals the reciprocal of the sine of the slope angle
of the gradient. It is easy to see that

lim
R→∞

ς∗ψ0
=

1/2 + e1,1
μ,λ

cμ/μ,λ
lim

R→∞

√
1 + α2d2R2α−2

α2d2R2α−4
= ∞

lim
R→0

ς∗ψ0
=

⎧⎪⎨⎪⎩
∞ if α > 2

1/2+e1,1
μ,λ

2dcμ/μ,λ
if α = 2

0 if α = 1

(18)

holds. As one can see, if R increases, the SAR tends to increase higher and higher
mutation strengths in turn. On the other hand, for decreasing distances, the SAR also
answers with increasing higher and higher mutation strengths (α > 2) or mutation
strengths higher than a limit value (α = 2). The important point is that the ES maintains
a strictly positive mutation strength – provided that α > 1. In the case of the sharp ridge
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it goes to zero. These behaviors can be traced back to the shape of the ridge or more
correctly to the gradient at R ∇f(x, R) = (1,−dαRα−1)T. Let us reconsider the SAR

ψ(σ∗) = τ2
(
1/2 + e1,1

μ,λ −
dαRα−1√

1 + (dαRα−1)2
σ∗

R

)
.

In the case of the sharp ridge, the slope of the gradient and with it the sine of the angle
is constant through the search space. As the result, the SAR behaves as in the case of
the sphere model. As the distance decreases, smaller and smaller mutation strengths
lead to a negative SAR and to an expected decrease of the mutation strength. In the case
of the sphere model this behavior is desirable and necessary: If the ES approaches the
optimum, the mutation strength should be decreased. In the case of ridge functions this
indicates a potential premature convergence.

The slope of the gradient of quadratic (or higher) ridge functions depends in stark
contrast to the sharp ridge on the position in the search space or more correctly on
how far the ES is away from the ridge. As the distance to the axis decreases, the angle
between axis and gradient becomes smaller. The sine approaches zero and counteracts
to some extend the normal reaction from the sphere model to increase the loss part.

The R-evolution remains to be considered. The progress rate ϕ∗
R (12) is strictly posi-

tive in the interval ς∗ ∈ (0, 2Rμ cμ/μ,λ

√
q2/(1 + q2)). The second zero of the progress

rate reads

ς∗ϕR
= 2Rμcμ/μ,λ

√
α2d2R2α−2

1 + α2d2R2α−2

= Rς∗sph
ϕR

√
α2d2R2α−2

1 + α2d2R2α−2
(19)

with

ς∗sph
ϕR

:= R2μcμ/μ,λ (20)

denoting the normalized (with respect to N ) zero of the progress rate in the case of the
sphere model [20]. Again the zero of the sphere model appears which is weighted in
this case by the sine of the slope angle of the gradient and not by its reciprocal as in the
case of the zero of the SAR. As a result, it can be shown that the zero of the progress
rate behaves in accordance with the distance to the ridge, i.e.,

lim
R→∞

ς∗ϕR
= 2μcμ/μ,λ lim

R→∞

√
α2d2R2α

1 + α2d2R2α−2
= ∞

lim
R→0

ς∗ϕR
= 2μcμ/μ,λ lim

R→0

√
α2d2R2α

1 + α2d2R2α−2
= 0. (21)

As we have seen, one of the first obvious differences between the sharp ridge (α = 1)
and higher order ridge functions (α ≥ 2) is that only in the case of the latter, the SAR
(14) does not allow the mutation strength to mirror a decrease of the distance infinitely.
Furthermore, only for α = 1 both zeros (16) and (19) are linear functions in R. To
discuss these and further differences, we will now take a closer look at the sharp and
parabolic ridge.
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3.2 The Parabolic Ridge

Let us first consider the parabolic ridge, i.e. α = 2 and F (y) = x − dR2, as a repre-
sentative of ridge functions with α ≥ 2. Figure 2 illustrates the behavior of the (ς∗, R)-
system depicting the so-called isoclines (see e.g. [23]) ϕ∗

R = 0 and ψ = 0 as functions
of R. The area below the isocline ψ = 0 is characterized by (ς∗, R)-combinations for
which the SAR is positive and the mutation strength is expected to increase. Similarly,
the area below ϕ∗

R = 0 is characterized by a positive progress rate and thus by an ex-
pected decrease of the distance to the ridge. If R increases, the SAR tends to increase
higher and higher mutation strengths. This effects in turn the R-evolution. Here, the
zero of the progress rate increases as well. Higher and higher mutation strengths will
result in an expected decrease of the distance and not in a further increase. On the other
hand, if R decreases, the zero of the progress rate decreases as well. Mutation strengths
that would increase the distance are thus also decreasing. But the potential answer of
the ς-evolution is either to increase an increasing range of mutation strengths or at least
every mutation strength smaller than a limit. Thus, neither a convergence of R → 0,
i.e., a convergence to the axis, nor a divergence of R→∞ occurs.

As Fig. 2 shows there is a stationary state of the (ς∗, R)-system. In the stationary
state the ς∗- and the R-evolution come to hold (on average) – i.e., the evolution strategy
is expected to fluctuate at a certain distance to the axis. Apart from the trivial stationary
state with ς∗ = 0, the stationary state is characterized by requiring that both the SAR
(14) and the progress rate ϕ∗

R (12) are zero.
Considering the last two equations of (15), their stationary points are given by

R(g+1) = R(g) ⇒ ϕR(R(g), 〈ς∗(g)〉) = 0

〈ς∗(g+1)〉 = 〈ς∗(g)〉 ⇒ ψ(R(g), 〈ς∗(g)〉) = 0. (22)

As mentioned, the progress rate (12) and the SAR (14) must be zero. In order to get
the stationary R, one has to solve both equations simultaneously for R. Taking (16) and
(19) into account we obtain by ς∗ψ0

= ς∗ϕR
, i.e.,

R
(1/2 + e1,1

μ,λ

cμ/μ,λ

)√1 + q2

q2
= 2μcμ/μ,λR

√
q2

1 + q2

⇒ q2
st =

1/2 + e1,1
μ,λ

2μc2
μ/μ,λ − 1/2− e1,1

μ,λ

. (23)

Since q2 = α2d2R2α−2, (7), the stationary distance to the ridge becomes

Rst =
( 1/2 + e1,1

μ,λ

α2d2
(
2μc2

μ/μ,λ − 1/2− e1,1
μ,λ

))1/(2α−2)

(24)

for general α > 1 and

Rst =
1
2d

√√√√ 1/2 + e1,1
μ,λ

2μc2
μ/μ,λ − 1/2− e1,1

μ,λ

(25)

for the parabolic ridge itself. As one can see, it decreases with increasing d.
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In [14] an estimate of the stationary distance of CSA-ES was obtained for the
parabolic ridge, i.e., for α = 2, Rst ∝ 1/(2d) which also reappears in the case of
σ-self-adaptation. Again, a similarity with the situation of the noisy sphere model ap-
pears [24]. In that case, the stationary distance scales with the standard deviation (noise
strength) of additive normally distributed noise, i.e. Rst ∝ σε. Therefore, 1/d, the in-
version of the weighting constant of the embedded sphere, appears similar to the noise
term σε.

The stationary distance (24) can be used together with the SAR’s zero (16) or with
the zero of the progress rate (19) to give the stationary mutation strength as

ς∗st =
√

2μ(1/2 + e1,1
μ,λ)
( 1/2 + e1,1

μ,λ

α2d2
(
2μc2

μ/μ,λ − 1/2− e1,1
μ,λ

))1/(2α−2)

(26)

in the general case and

ς∗st =
1/2 + e1,1

μ,λ

2d

√
2μ

2μc2
μ/μ,λ − 1/2− e1,1

μ,λ

(27)

for α = 2. For the progress in direction of the ridge axis, this leads to

ϕ∗
x st =

cμ/μ,λ√
1 + q2

st

ς∗st

=
√(

1/2 + e1,1
μ,λ

)(
2μc2

μ/μ,λ − 1/2− e1,1
μ,λ

)
×
( 1/2 + e1,1

μ,λ

α2d2(2μc2
μ/μ,λ − 1/2− e1,1

μ,λ))

)1/(2α−2)

(28)

as the expected stationary progress on the ridge for α > 1 leading for α = 2 to

ϕ∗
x st =

1/2 + e1,1
μ,λ

2d
.

Figure 3 shows the stationary mutation strength (27), distance (25), and progress
rate (29) as functions of the parent number μ comparing them with the results of ex-
periments. The agreement between prediction and experiment is good, but it should
be mentioned that the experimental data are lower than predicted. Interestingly, the
experiments do not show significant differences between high and low search space
dimensionality. This is somewhat surprising and up to now not fully understood.

Equations (27) and (29) can be used to investigate the influence of recombination
of the object parameters on the self-adaptation response function. As Fig. 3 shows,
the maximal progress and the maximal mutation strength occur in the case of non-
recombinative ES, i.e., for μ = 1, which is confirmed by experiments. Introducing
multi-parent recombination does not lead to any advantage at all.

The stationary progress on the axis is influenced by the stationary mutation strength
and therefore by progress rate (towards the axis) (12) and the SAR (14). In the case
of the parabolic ridge, it can be given as ϕ∗

x st = (1/2 + e1,1
μ,λ)/(2d) (29). The ef-

fects of recombination are reflected by the progress coefficient e1,1
μ,λ which stems from
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the SAR. All other influences have averaged out. The progress coefficient e1,1
μ,λ is a

monotonously decreasing function in μ for μ < λ/2. The first zero point is at μ = λ/2.
Afterwards, negative values are assumed until it approaches zero again for μ = λ. As
a result, the stationary progress (29) is highest for μ = 1 and ES does not benefit from
recombination.

To sum up the findings before addressing the sharp ridge: Using the deterministic
variant of the evolution equations, two main results can be derived. First, a stationary
state other than ς∗ = 0 exists which allows for positive progress. Second, the ES does
not benefit at all from multi-parent recombination.
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Fig. 2. The zero points of the progress rate ϕ∗
R and ψ as functions of the distance to the ridge R

for (1, 10)-ES with d = 1. Region I1 is characterized by ΔR > 0, Δς∗ > 0, I2 by ΔR < 0,
Δς∗ > 0, I3 by ΔR < 0, Δς∗ < 0, and finally I4 by ΔR > 0, Δς∗ < 0. The system either
leaves every region Ik a gain, i.e., it oscillates, or it converges to the equilibrium point.

3.3 The Sharp Ridge

For the sharp ridge, i.e., for α = 1 and F (y) = x − dR, the ES shows a completely
different behavior without a stationary distance to the ridge. In the case of CSA-ES, it
was found [14] that the behavior is determined by the choice of the d-parameter of the
ridge: Either a convergence towards the axis or a divergence R→∞ occurs. In contrast
to α > 1, there is no additional feedback from the distance R over the q = dαRα−1

parameter. The stationary state with ψ = ϕ∗
R = 0, can only be fulfilled for one choice

of the parameter, i.e., for

dcrit =

√√√√ 1/2 + e1,1
μ,λ

2μc2
μ/μ,λ − 1/2− e1,1

μ,λ

(29)

(see (23)). Otherwise, there is no stationary point (other then R = 0 or ς∗ = 0). The crit-
ical d-value (29) decides over the question of convergence and divergence. It depends
strongly on the population parameter μ and is highest for μ = 1 or μ approaching λ as
Fig. 4 illustrates. Recombination lowers the critical d-value for the usual μ : λ-ratios.
As can be seen for μ = 1 only the results for d = 0.9 (critical d-value 0.936) converge.
In the case of μ = 3 with a critical d-value of 0.418, all runs with d < 0.5 diverge
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Fig. 3. The stationary distance (25), mutation strength (27), and progress rate (29) for some
(μ/μI , 10)-ES with self-adaptation on the parabolic ridge. Each data point was sampled over
200, 000 generations (N = 30, N = 100) and 900, 000 (N = 1000) generations. The stars
indicate the results for N = 1000, the triangles those for N = 100, and the boxes those for
N = 30.

whereas for μ = 5 only the runs for d = 0.2 diverge clearly. The critical d-value in this
case is 0.31.

The general situation of the system in ς∗ and R is depicted in Fig. 5 which again
shows the isoclines ϕ∗

R = 0 and ψ = 0. Both are now linear functions in R. Again,
the area below ψ = 0 is characterized by a positive SAR and an expected increase of
the mutation strength and the area below ϕ∗

R = 0 is characterized by positive progress
and an expected decrease of the distance (which is indicated by the arrows in Fig. 5).
As can be seen in the figure, the ES will eventually move into the area between the
two isoclines. Let us illustrate that by example for Fig. 5 a). Here, the isocline ϕ∗

R = 0
is above the isocline ψ = 0. This equals the condition d > dcrit. If the system starts
in the area below ψ = 0, the SAR and the progress rate are positive. As a result, the
mutation strength increases and the distance decreases. The system thus moves towards
the line ψ = 0. Once this is reached, the ς∗-evolution temporarily stops. But since the
R-evolution still progresses and the distance decreases, the isocline ψ = 0 is crossed
and the system enters the area between both isoclines. There it remains and approaches
zero. Therefore for ς∗ϕR

> ς∗ψ0
, i.e. d > dcrit, the system in R and ς∗ approaches the

origin with R → 0, ς∗ → 0 as in the case of the sphere. On the other hand, once
d < dcrit (see Fig. 5 b)) and ς∗ϕR

< ς∗ψ0
, the system reaches the cone defined by the

ϕ∗
R = 0 and ψ = 0 but it moves into the opposite direction – going to infinity. It is easy

to see that the latter case is always connected with a positive (expected) quality change.
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Fig. 4. Results from (μ/μI , λ)-ES runs for the first 100, 000 generations for several choices of d
(N = 100). Shown is every 50th value. Each data line is averaged over 20 runs. Also shown are
the minimal and maximal values.
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Fig. 5. The isoclines ϕ∗
R = 0 and ψ = 0 as functions of the distance to the ridge R for (1, 10)-ES

with a = 1. In a) region I1 is characterized by ΔR > 0, Δς∗ < 0, I2 by ΔR < 0, Δς∗ < 0, and
I3 by ΔR < 0, Δς∗ > 0. Possible movements between the regions are I3 → I2 and I1 → I2.
It is easy to see that I1 and I3 will be left eventually. The region I2 cannot be left and the system
in ς∗ and R approaches the origin. In b) region I1 is characterized by ΔR > 0, Δς∗ < 0, I2

by ΔR > 0, Δς∗ > 0, and I3 by ΔR < 0, Δς∗ > 0. Possible movements are I1 → I2 and
I3 → I2, but I2 cannot be left. The system diverges to infinity.
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So, if λ and μ are chosen appropriately to d, the self-adaptive ES does not converge
prematurely but shows the behavior required.

The question that remains, though, is whether the ES is able to travel with nearly
optimal speed. Let d < dcrit and consider the quality change ΔQ∗= ϕ∗

x + dϕ∗
R

ΔQ∗ =
√

1 + d2cμ/μ,λς∗ − d

2Rμ
ς∗2 (30)

as the performance measure. Its optimizer is given by ς∗opt = cμ/μ,λRμ
√

1 + d2/d. As
Fig. 5 shows the ES – i.e., the system in ς∗ and R is expected to remain in region I2 in
the long run. The maximal mutation strength the ES can attain there is the SAR’s zero
ς∗ψ=R(1/2 + e1,1

μ,λ)/cμ/μ,λ

√
1 + d2/d (see (16)). It can be shown by case inspection

that for a long range of μ-values (except for μ = 1) ς∗ψ is quite smaller than ς∗opt [22].
As the result, only in the case of one parent the ES has the potential to realize nearly
optimal mutation strengths.

Table 1. Important Symbols and Abbreviations

N dimensionality of the search space
μ number of parents
λ number of offspring
N (μ, σ) Normal distribution with mean μ and standard deviation σ
Φ cumulative density function of standard normal distribution
ψ self-adaptation response function (SAR)
ϕx progress rate parallel to axis direction
ϕR progress rate (distance to axis)
ϕ∗

R progress rate (distance to axis) normalized w.r.t. N
ϕ∗

R progress rate (distance to axis) normalized w.r.t. N
ΔQ∗ quality change normalized w.r.t. N
τ learning rate; parameter of log-normal distribution
d ridge parameter: weighting constant of embedded sphere
α ridge parameter: degree of the ridge
R distance to ridge axis
x position on axis
q abbreviation for αdRα−1

ς∗ mutation strength normalized w.r.t. N

σ∗ abbreviation for 〈ς∗(g)〉
ς∗ψ0 zero of the SAR
ς∗ϕR

zero of the progress rate ϕR

ς∗st stat. mutation strength
Rst stat. distance to axis
ϕ∗

xst
stat. progress rate parallel to axis

cμ/μ,λ progress coefficient
eα,β

μ,λ generalized progress coefficient
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4 Conclusion and Outlook

Self-adaptive intermediate ES show very different behaviors on the sharp and parabolic
ridge. As we have seen, for α > 1, the ES fluctuates at a stationary distance from the
ridge with a positive mutation strength. As a result, there is progress in axis direction.
However, the mutation strength is far from optimal for the overall fitness gain on the
ridge. The ES is deceived by the sphere-model part of the ridge. Due to the influence of
the distance on the SAR, the ES is not able to optimize the subgoals equally well. The
SAR strives to maintain a positive mutation strength for decreasing distances which
hinders a convergence towards the axis. As already pointed out in [14], the case of
α > 1 closely resembles the situation in the noisy sphere model where the ES is unable
to converge to the optimizer and remains then on average at a certain distance to the
optimizer.

In the case of the parabolic ridge, recombination appears to have no advantage com-
pared to non-recombinative (1, λ)-ES. If μ is chosen to the usual rules, i.e, as long as
μ ≤ λ/2, the mutation strength and the progress are lowered.

In the case of the sharp ridge, the ES either converges prematurely or enlarges the
distance to the axis. This depends on the choice of the d-parameter with respect to the
population parameters μ and λ. Additionally, it can be shown that even if self-adaptive
ES do not converge prematurely, their travel speed is not optimal since self-adaptation
realizes mutation strengths too small. In addition, increasing μ from 1 upwards lowers
the critical d-factor for premature convergence.

This analysis must be extended to include the fluctuation parts of the evolution equa-
tions and the N -dependent versions of the progress rates and SAR. Additionally, the
effects of noisy fitness evaluation should be investigated. And finally, a comparison
with other adaptation schemes are of interest.
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A The Density Function of an Offspring

Let us consider the quality change of an offspring l based on the centroid 〈y〉 of the
parent population

Q := F (yl)− F (〈y〉) = yl
1 − 〈y1〉 − d(rα −Rα)

=: zx − d(rα −Rα) (31)
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where zx := yl
1−〈y1〉 denotes the change in the first component of the vector, whereas

R :=
(∑N

k=2(〈yk〉)2
)1/2

denotes the centroid’s distance to the ridge and ridge r :=(∑N
k=2(y

l
k)2
)1/2

gives the distance of the offspring. In order to derive the cumulative
density function (cdf) and probability density function (pdf) of an offspring several
steps are needed:

1. Note, the ridge function is normalized f(y) = y1 − d
(∑N

i=2 y2
i

)α/2 =: x− dRα.
Thus, zx = x − 〈x〉 is the change of the first component of the object vector and
obeys a N (0, σ)-distribution.

2. The change r − R is small. Under this assumption consider the Taylor series ex-
pansion of f(r) = rα around R, Tf (r) = Rα + αRα−1(r − R) + O((r − R)2).
Provided that the contributions of the quadratic (and higher) terms can be neglected,
the fitness change simplifies to Q = x − 〈x〉 − dαRα−1(r − R) + O((r − R)2).
Note the assumption above is only necessary to treat the case of general α. In the
case of α = 1, there is no quadratic term. In the case of α = 2, it is possible to treat
r2 directly by the usual decomposition (see below). So, in the case of the sharp and
the parabolic ridge the assumption is not required.

3. Consider the (N−1)-dimensional system (y2, . . . , yN)T. An offspring is created by
adding a mutation vector z to the parental vector R, i.e. r = R + z. Switching to a
coordinate system with origin in R, we can decompose z into two parts−zReR+h
where eR := R/R and h is perpendicular to R. This decomposition is similar to
the decomposition in the case of the sphere model [20]. Therefore, the r-vector can
re-written as r = R−zReR+h and its length as r = ‖r‖ =

√
(R− zReR)2 + h2.

4. The distributions of the components of the r-vector remains to be addressed. Due to
the isotropy of the mutations used, the first component zR will be assumed to be the
second component of the object vector y. It is therefore N (0, σ)-distributed. The
remaining sum h2 =

∑N
i=3 y2

i consists of the squares of N−2 normally distributed
random variables and is χ2-distributed. A χ2-distribution may be modeled using
a normal distribution. Considering sufficiently large N , h2 is N (Nσ2,

√
2Nσ2)

distributed.
5. Consider the square root

f(zR, hR) =
√

(R− zR)2 + h2 =
√

R2 − 2RzR + z2
R + h2 (32)

which can be rewritten as

f(zR, hR) = R

√
1− 2

R
zR +

z2
R

R2
+

h2

R2

= R

√
1− 2

(zR

R
− z2

R

2R2
− h2

2R2

)
. (33)

Provided that zR � R, h � R hold, the root can be expanded into a Taylor series
around zero and cut off after the very first term giving f(zR, hR) = R

(
1−zR/R+

z2
R/(2R2)+h2/(2R2)

)
. Provided that z2

R/(2R2) � 1, the term may be neglected.
6. Let us treat the case of α = 2 separately. Here, we have r2 = (R − zR)2 + h2 =

R2+2R2
(
−zR/R+z2

R/(2R2)+h2/(2R2)
)

and only require that the contribution
of the square of zR is negligible.
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As already pointed out in [14] the resulting quality change

Q = zx − dαRα−1
(
R
(
1− zR

R
+

h2

2R2

)
−R
)

= zx + dαRα−1
(
zR −

h2

2R

)
(34)

is very similar to that of a noisy sphere with zx in the role of the noise term.
The cumulative density function (cdf) and the probability density function (pdf) of

an offspring can now be easily given as

P (Q) = Φ

(
Q + q N

2Rσ2√
σ2(1 + q2) + q2 N

2R4 σ4

)
(35)

and

p(Q) =
exp
(
− 1

2

(
Q+q N

2R σ2√
σ2(1+q2)+q2 N

2R4 σ2

)2
)

√
2π
√

σ2(1 + q2) + q2 N
2R4 σ4

(36)

with q = dαRα−1 (7). Introducing the normalizations Q∗ = Q/N and σ∗ = σ/N , the
pdf and cdf change to

P (Q∗) = Φ

(
N

Q∗

N + q σ∗2

2RN√
σ∗2(1 + q2) + q2 σ∗4

2N2R4

)

= Φ

(
Q∗ + q σ∗2

2R√
σ∗2(1 + q2) + q2 σ∗4

2N2R4

)
(37)

and

p(Q∗) = N

exp
(
− 1

2

(
Q∗+q σ∗2

2R√
σ∗2(1+q2)+q2 σ∗4

2N2R4

)2
)

√
2π
√

σ∗2(1 + q2) + q2 σ∗2

2N2R4

(38)

The expression p(Q) dQ is equal to 1/N p(Q∗) dQ∗= p∗(Q∗) dQ∗. In the case of
N →∞, the components stemming from the distance’s perpendicular part vanish lead-
ing to

P (Q∗) = Φ
( Q∗ + q σ∗2

2R√
σ∗2(1 + q2)

)
(39)

and

p∗(Q∗) =
exp
(
− 1

2

(
Q∗+q σ∗2

2R√
σ∗2(1+q2)

)2
)

√
2π
√

σ∗2(1 + q2)
(40)

which will be used in the remainder of this paper.
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B The Progress Rates

The following lemma is taken directly from [15, p.6]:

Lemma 1. Let Y1, Y2, . . . , Yλ be λ independent standard normally distributed random
variables and let Z1, Z2, . . . , Zλ be λ independent normally distributed random vari-
ables with zero mean and variance θ2. Then, defining Xl = Yl+Zl for l = 1, . . . , λ and
ordering the sample members by nondecreasing values of the X variates, the expected
value of the arithmetic mean of those μ of the Yl with the largest associated values of
Xl is

〈Y 〉 =
cμ/μ,λ√
1 + θ2

. (41)

Lemma 1 can be used to determine the progress rates. Note, the same decomposition as
in Appendix A applies: The quality change of an offspring is given by

Q = zx + qzR −
q

2R
h2. (42)

The random variables zx and zR are normally distributed with mean zero and standard
deviation σ. Similarly, the random variable h2 may be assumed to be normally dis-
tributed with mean Nσ2 and standard deviation

√
2Nσ2 if N is sufficiently large. In

the following, we will switch to standard normally distributed random variables u∗:

Q = σux + qσuR −
q

2R

√
2Nσ2uh2 − q

2R
Nσ2. (43)

Let us start with the axial progress

ϕx = E
[
〈x(g+1)〉 − 〈x(g)〉

]
= E[〈zx〉] = σE[〈ux〉]. (44)

The expectation can be determined using Lemma 1. Note, the addend q/(2R)Nσ2 in
(43) does not influence the selection since it is the same for all offspring. The corre-
sponding normally distributed variables Zl of Lemma 1 are defined by

Zl =
q

σ
σuR −

q

2σR

√
2Nσ2uh2 = q

√
1 +

N

2R2
σ2Nl(0, 1). (45)

whereNl(0, 1) denotes a standard normally distributed random variable. Note, the sum
of two normally distributed random variables is again a normally distributed random
variable. Therefore, Lemma 1 gives

ϕx =
cμ/μ,λσ2√

σ2(1 + q2) + q2 N
2R2 σ4

. (46)

The progress (not normalized and normalized) towards the axis is defined as

ϕR := E[R− r] = RE
[
1−
√(

1− 〈zR〉
R

)2

+
〈h〉2
R2

]
ϕ∗

R := NE[R− r] = RNE
[
1−
√(

1− 〈zR〉
R

)2

+
〈h〉2
R2

]
. (47)

To continue, we use the results obtained in [20] and [15]:
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1. It was shown in [20] that

ϕ∗
R = NR(1−

√(
1− 〈zR〉

R

)2

+
〈h〉2
R2

) +O
(

1√
N

)
. (48)

2. To determine the expectation of the central component Lemma 1 can be used. The
determination is completely analogous to the determination of E[〈zx〉]. Only the
roles of zR and zx are reversed:

〈zR〉 =
cμ/μ,λqσ2√

σ2(1 + q2) + q2 N
2R2 σ4

. (49)

3. In the case of the lateral component, the expectation over the square of the sum
of μ vectors must be taken. Since the random vectors hm;λ are independent [20],
E[hT

m;λhl;λ] = 0 holds for m 
= l. The expectation

〈h〉2 =
〈h2〉
μ

(50)

remains. Remember, the random variable h2 of each offspring is also a normally
distributed random variable with mean Nσ2 and standard deviation

√
2Nσ2

〈h2〉
μ

=
√

2N

μ
σ2〈uh2〉+

N

μ
σ2. (51)

Let us now consider 〈uh2〉. Using (43), the corresponding Zl of Lemma 1 read

Zl =
σ

q
2R

√
2Nσ2

ux +
qσ

q
2R

√
2Nσ2

uz =

√
1 + q2σ√
2Nσ2 q

2R

Nl(0, 1). (52)

Taking note of the sign in (43), this leads to

〈uh2〉 = −
q

2R

√
2Ncμ/μ,λσ2√

σ2(1 + q2) + q2 N
2R2 σ4

. (53)

By plugging (53) into (51),

〈h2〉
μ

= −
cμ/μ,λq N

R σ4

μ
√

σ2(1 + q2) + q2 N
2R2 σ4

+
N

μ
σ2 (54)

is obtained. Introducing again the normalization σ∗ = Nσ, (54) changes to

〈h2〉
μ

= −
cμ/μ,λ

q
RN2 σ∗4

μ
√

σ∗2(1 + q2) + q2 σ∗4

2R2N

+
σ∗2

μN
(55)
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and (49) becomes

〈zR〉 =
cμ/μ,λq σ∗2

N√
σ∗2(1 + q2) + q2

2NR2 σ∗4
. (56)

The results (55) and (56) are then inserted into the lateral progress rate (48).
4. Using Taylor series expansions (see [20, p.215]) for (48)) and the resulting expres-

sions, it can be shown that for N →∞

ϕ∗
R =

qσ∗√
1 + q2

cμ/μ,λ −
σ∗2

2Rμ
(57)

is obtained. Although the calculations are straightforward, they are lengthy and of
purely technical nature. Therefore, they are omitted at this point. Equation (57)
will serve as an approximate formula for finite dimensional search spaces. Note,
the progress rates (46) and (57) were obtained for the case τ = 0 and thus only
applicable for small values of τ .

C The Self-adaptation Response

C.1 The First Order Self-adaptation Response

To simplify the notations, we will again set σ∗ := 〈ς∗(g)〉, R := r(g), and X := x(g).
The self-adaptation response denotes the relative expected change of the mean of the
population’s mutation strength, i.e., ψ = E[(〈ς∗〉 − σ∗)/σ∗] or

ψ(σ∗, x(g), r(g)) =
1
μ

μ∑
m=1

E
[ ς∗m;λ − σ∗

σ∗
]

=
∫ ∞

0

( ς∗ − σ∗

σ∗
)
pm;λ(ς∗, σ∗, x(g), r(g)) dς∗. (58)

The mutation strength ς∗m;λ is the mutation strength that is connected with the offspring
with the mth highest quality change in λ trials. To continue, we need its density function
(pdf)

pm;λ(ς∗, σ∗, X, R) = pσ∗(ς∗|σ∗)
λ

(m− 1)!(λ−m)!

∫ ∞

−∞
p(Q∗|ς∗, X, R)

×P (Q∗|σ∗, X, R)λ−m
(
1−P (Q∗|σ∗, X, R)

)m−1

dQ∗. (59)

Note, it is generally not possible to obtain analytical closed solutions of (58). Therefore,
we will resort to approximate expressions. The first concerns the cumulative density
function (cdf) P (Q∗|σ∗, X, R) which is given as the expectation

P (Q∗|σ∗, X, R) =
∫ ∞

0

P (Q∗|ς∗, X, R)pσ∗(ς∗|σ∗) dς∗

=
∫ ∞

0

Φ

(
Q∗ + q ς∗2

2R√
ς∗2(1 + q2)

)
pσ∗(ς∗|σ∗) dς∗ (60)
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over the ς∗-range. The integral expression can be simplified if some assumptions are
met [20]. In the case of a log-normal operator, it can be shown that

P (Q∗|σ∗, X, R) = Φ

(
Q∗ + q σ∗2

2R√
σ∗2(1 + q2)

)
+O(τ2). (61)

Assuming that τ � 1 holds, the τ -dependent part can be neglected. In the following,
we will aim at a simplification of the formulae. The first step is a substitution of the
argument in (61) with

z = −
Q∗ + q σ∗2

2R√
σ∗2(1 + q2)

⇒ Q∗ = −
√

σ∗2(1 + q2)z − q
σ∗2

2R
. (62)

The density function p(Q∗|ς∗, X, R) changes accordingly to

p(Q∗|ς∗, X, R) dQ∗ =
1√
2π

e
− 1

2

(
Q∗+q ς∗2

2R√
ς∗2(1+q2)

)2

√
ς∗2(1 + q2)

dQ∗

⇒ −p(z|ς∗, X, R) dz = − 1√
2π

σ∗

ς∗

×exp

(
− 1

2

(
σ∗

ς∗
z −

q
2R

(
ς∗2 − σ∗2

)√
ς∗2(1 + q2)

)2
)

dz

=: − 1√
2π

G(ς∗)F (ς∗, z) dz (63)

where F (ς∗, z) denotes the exponential function and G(ς∗) = σ∗/ς∗. Let us come back
to (58) which can now be given as

ψ(σ∗, X, R) =
∫ ∞

0

( ς∗ − σ∗

σ∗
)
pσ∗(ς∗|σ∗)

×
∫ ze

−z0

p(z|ς∗, X, R)
1
μ

μ∑
m=1

λ

(m− 1)!(λ−m)!

×Φ(z)λ−m
(
1− Φ(z)

)m−1

dz dς∗. (64)

Let us first consider 1/μ
∑μ

m=1 λ/[(m− 1)!(λ−m)!](1− Φ(z))λ−mΦ(z)m−1 which
represents a regularized incomplete beta function [20]. Therefore, it can be substituted

by the integral 1/[(λ− μ− 1)!(μ− 1)!]
∫ 1−Φ(z)

0
xλ−μ−1(1− x)μ−1 dx. Equation (64)

changes to

ψ(σ∗, X, R) =
λ!

μ(λ− μ− 1)!(μ− 1)!

∫ ∞

0

( ς∗ − σ∗

σ∗
)
pσ∗(ς∗|σ∗)

×
∫ ze

−z0

p(z|ς∗, X, R)

×
∫ 1−Φ(z)

0

xλ−μ−1(1− x)μ−1 dxdz dς∗. (65)
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In the next step, we change the integration order of the integration over z and x

ψ(σ∗, X, R) =
λ!

μ(λ− μ− 1)!(μ− 1)!

∫ ∞

0

( ς∗ − σ∗

σ∗
)
pσ∗(ς∗|σ∗)

×
∫ 1

0

∫ Φ−1(1−x)

0

p(z|ς∗, X, R) dz

×xλ−μ−1(1− x)μ−1 dxdς∗. (66)

Setting x = (1− Φ(t)), (66) changes to

ψ(σ∗, X, R) =
λ!

μ(λ− μ− 1)!(μ− 1)!

∫ ∞

0

( ς∗ − σ∗

σ∗
)
pσ∗(ς∗|σ∗)

×
∫ ∞

0

∫ t

0

p(z|ς∗, X, R) dz

×
(
1− Φ(t)

)λ−μ−1

Φ(t)μ−1e−
t2
2 dt dς∗. (67)

In order to continue, the functions G and F introduced in (63) will be expanded into
their Taylor series’ TG and TF around σ∗. From this point we will consider

p(z|ς∗, X, R) dz = TG(ς∗)TF (ς∗) dz =
∞∑

k=0

∂k

∂ς∗k
G(ς∗)|ς∗=σ∗

(ς∗ − σ∗)k

k!

×
∞∑

l=0

∂l

∂ς∗l
F (ς∗, z)|ς∗=σ∗

(ς∗ − σ∗)l

l!
dz. (68)

To this end, the functions’ derivatives must be derived (see Appendix C.2). The question
remains when the Taylor series may be cut off without introducing a serious approx-
imation error. The approximability depends on the assumption of τ � 1. The conse-
quences are the following: The expectation of (ς∗ − σ∗)k leads to σ∗k(−1)k

∑k
l=0

(
k
l

)
(−1)l exp(l2τ2/2). The exponential function can be expressed as exp(l2τ2/2) =∑∞

m=0 l2mτ2m/m!. Therefore, the expectation of (ς∗ − σ∗)k only contains even pow-
ers of τ . Because of τ � 1 it is possible to neglect higher order terms of τ , (i.e., τ2m

with m ≥ 2) without introducing serious approximation errors.
The question remains whether and when we can cut off the Taylor series in (ς∗−σ∗).

It can be shown that E[(ς∗ − σ∗)k] only contains τ2m terms which fulfill k < 2m + 1.
In other words, terms with τ2 only appear for the first and second moment. Once we
have k ≥ 3, the lowest power of τ appearing is four (see e.g. [25]).

This has two effects: First, we can cut off the series after the quadratic term and
introduce an error term of order O(τ4). Second, since we multiply the series’ with
(ς∗−σ∗)/σ∗ all terms of the result with (ς∗−σ∗)3 and (ς∗−σ∗)4 can also be neglected.
That is, all contributions from the quadratic or higher terms of the original series enter
the error term and only the contributions of the first derivatives need to be taken into
account.

We will first address the integration over z. It can be shown that the Taylor series of
F is a polynomial in z. Let fk denote all components of the Taylor series of F which
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are connected with zk. Equation (63) is of the form

p(z|ς∗, X, R) dz =
1√
2π

G(ς∗)F (ς∗, z) dz =
1√
2π

G(ς∗)TF (ς∗, z) dz

=
e−

z2
2

√
2π

G(ς∗)
(
f0 + f1z + f2z

2 + f3z
3 + f4z

4

+R(z, ς∗)
)

dz. (69)

The integration over z is straightforward (see [20, p.331f])∫ t

0

p(z|ς∗, X, R) dz = G(ς∗)
∫ t

0

e−
z2
2

√
2π

(
f0 + f1z + f2z

2 + f3z
3 + f4z

4
)

dz.

=
G(ς∗)√

2π

(
√

2πf0Φ(t)− f1e−
z2
2

+f2

(√
2πΦ(t)− te−

t2
2

)
− f3e−

t2
2

(
2 + t2

)
+3
√

2πf4Φ(t) − f4e−
t2
2

(
3t + t3

))

= G(ς∗)

(
(f0 + f2 + 3f4)Φ(t) − e−

z2
2

√
2π

×
(

f1 + 2f3 + (f2 + 3f4)t + f3t
2 + f4t

3

))
. (70)

The next step is the integration over t

It(ς∗) =
G(ς∗)λ!

μ(λ− μ− 1)!(μ− 1)!

∫ ∞

0

(
(f0 + f2 + 3f4)Φ(t) − e−

z2
2

√
2π

×
(
f1 + 2f3 + (f2 + 3f4)t + f3t

2 + f4t
3
))

×
(
1− Φ(t)

)λ−μ−1

Φ(t)μ−1e−
t2
2 dt dς∗ (71)

which cannot be solved analytically. Instead, we use the so-called generalized progress
coefficients (8). Equation (71) changes to

It(ς∗) = G(ς∗)
(

f0 + f2 + 3f4 −
((

f1 + 2f3

)
e1,0

μ,λ

−(f2 + 3f4)e
1,1
μ,λ + f3e

1,2
μ,λ − f4e

1,3
μ,λ

))
= G(ς∗)

(
f0 + f2 + 3f4 −

(
f1 + 2f3

)
cμ/μ,λ

+(f2 + 3f4)e
1,1
μ,λ − f3e

1,2
μ,λ + f4e

1,3
μ,λ

)
. (72)
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The integration over ς∗ still remains. The coefficients fk in (72) are polynomials in
(ς∗ − σ∗). As mentioned before, all contributions of terms higher than linear order can
be neglected. Since it can be shown by calculating the derivatives of F that f3 and
f4 contain only quadratic (or higher) terms, only f0, f1, and f2 need to be taken into
account

It(ς∗) = G(ς∗)
(

1 + f21(ς∗ − σ∗)− f11(ς∗ − σ∗)cμ/μ,λ

+f21(ς∗ − σ∗)e1,1
μ,λ +O

(
(ς∗ − σ∗)2

))
= G(ς∗)

(
1 + (f21 − f11cμ/μ,λ + f21e

1,1
μ,λ)(ς∗ − σ∗)

+O
(
(ς∗ − σ∗)2

))
. (73)

with fkl denoting the component of lth derivative of F associated with zk. As men-
tioned before, we will expand the function G into its Taylor series TG(ς∗) around σ∗,
i.e, TG(ς∗) =

∑∞
k=0 Gk/(k!)(ς∗ − σ∗)k= g0 + g1(ς∗ − σ∗) +O

(
(ς∗ − σ∗)2

)
which

gives

It(ς∗) = g0 + (f21 − f11cμ/μ,λ + f21e
1,1
μ,λ)g0(ς∗ − σ∗)

+g1(ς∗ − σ∗) +O
(
(ς∗ − σ∗)2

)
. (74)

Inserting (74) into the SAR and taking the integration over ς∗ gives

ψ(ς∗) =
∫ ∞

0

( ς∗ − σ∗

σ∗

)
It(ς∗)pσ∗(ς∗, σ∗) dσ∗

=
∫ ∞

0

(
g0

( ς∗ − σ∗

σ∗
)

+ (f21 − f11cμ/μ,λ + f21e
1,1
μ,λ)g0σ

∗
( ς∗ − σ∗

σ∗
)2

+g1σ
∗2
( ς∗ − σ∗

σ∗
)2

+O
(
(ς∗ − σ∗)3

))
pσ∗(ς∗|σ∗) dς∗. (75)

The expectation of (ς∗ − σ∗)k can be easily computed (see e.g. [20] or [25]) As men-
tioned before all terms with (ς∗ − σ∗)k with k > 3 contain only expressions of O(τ4).
We obtain

ψ(σ∗) = g0
τ2

2
+
(
f21 − f11cμ/μ,λ + f21e

1,1
μ,λg0 + g1

)
σ∗τ2 +O

(
τ4
)

= τ2
(g0

2
+
(
f21 + g1 − f11cμ/μ,λ + f21e

1,1
μ,λg0

)
σ∗
)

+O
(
τ4
)
. (76)

The coefficients gk and fkl are obtained in Appendix C.2, Eqs. (87) and (88). Inserting
(87) and (88), i.e. g0 = G(σ∗) = 1, g1 = ∂/(∂ς∗)G(ς∗)|ς∗=σ∗ = −1/σ∗, f11 =
−q/(R

√
1 + q2), and f21 = 1/σ∗ into (76),

ψ∞(σ∗) = τ2

(
1
2

+ e1,1
μ,λ − cμ/μ,λσ∗

√
q2

R2(1 + q2)

)
+O

(
τ4
)

(77)
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is obtained for N → ∞ which will serve as an approximate equation for finite dimen-
sional search spaces. Equation (77) was obtained under the assumption τ � 1 which
allows to neglect error terms of order τ4 in the approximation.

C.2 Deriving the Derivatives

Concerning the variable ς∗ the transformed density function (63)

p(z|ς∗, X, R) dz =
dz√
2π

σ∗

ς∗

×exp

(
− 1

2

(
σ∗

ς∗
z−

q
2R

(
ς∗2 − σ∗2

)
ς∗
√

1 + q2

)2
)

can be given as the general equation

p(z|ς∗, X, R) dz = G(ς∗)F (ς∗) dz =
g(σ∗)
g(ς∗)

e−
f(ς∗)2

2 dz

=
g(σ∗)
g(ς∗)

e
− 1

2g(ς∗)2

(
g(σ∗)z+K(h(ς∗)−h(σ∗))

)2

dz (78)

(see also Appendix C.1). In Appendix C.1, Eq.(68), the functions G and F are be ex-
panded into their Taylor series’ TG and TF around σ∗. To this end, the functions’ deriva-
tives are needed. The remainder of this section is devoted to this task. Let us start with
the function

G(ς∗) =
g(σ∗)
g(ς∗)

(79)

where g(x) = x. The first derivative is easily given as

∂

∂ς∗
G(ς∗) = −g(σ∗)g′(ς∗)

g(ς∗)2
. (80)

The function F is more complicated and depends additionally on the variable z. In its
most general form F and its first derivative reads

F (ς∗) = e−
f(ς∗)2

2

∂

∂ς∗
F (ς∗) = −f ′(ς∗)f(ς∗)e−

f(ς∗)2

2 (81)

where the function f is composed as follows

f(ς∗) =
1

g(ς∗)

(
g(σ∗)z + K(h(ς∗)− h(σ∗))

)
. (82)

Its first derivatives in turn is

f ′(ς∗) = − g′(ς∗)
g(ς∗)2

(
g(σ∗)z + K(h(ς∗)− h(σ∗))

)
+ K

h′(ς∗)
g(ς∗)

(83)
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As mentioned, we expand the functions F and G around the mean of the previous
parental mutation strengths σ∗. Thus, we only need the derivatives at this point. This
simplifies the equations significantly. In the case of the function f ,

f(σ∗) =
1

g(σ∗)

(
g(σ∗)z + K(h(σ∗)− h(σ∗))

)
= z

f ′(σ∗) = − g′(σ∗)
g(σ∗)2

(
g(σ∗)z + K(h(σ∗)− h(σ∗))

)
+ K

h′(σ∗)
g(σ∗)

= −g′(σ∗)
g(σ∗)

z + K
h′(σ∗)
g(σ∗)

(84)

are obtained. The function G and its first two derivatives become

G(σ∗) = 1
∂

∂ς∗
G(σ∗) = −g′(σ∗)

g(σ∗)
∂2

∂ς∗2 G(σ∗) =
1

g(σ∗)

(
2
g′(σ∗)2

g(σ∗)
− g′′(σ∗)

)
. (85)

The function F in turn becomes

F (σ∗) = e−
z2
2

∂

∂ς∗
F (σ∗) = −f ′(σ∗)ze−

z2
2 =

(
g′(σ∗)
g(σ∗)

z2 + K
h′(σ∗)
g(σ∗)

z

)
e−

z2
2 (86)

We now need the derivatives of the functions g and h. Since g(ς∗) = ς∗, its first deriva-
tive is g′(ς∗) = 1. The function h is given by h(ς∗) = ς∗2 which leads to h′(ς∗) = 2ς∗.
The constant K (with respect to ς∗) reads K = −q/(2R). Thus, we obtain

F (σ∗) = e−
z2
2 and

∂

∂ς∗
F (σ∗) =

(
z2

σ∗ −
q

R
√

1 + q2
z

)
e−

z2
2 (87)

i.e., f11 = −R
√

q2/(1 + q2) and f21 = 1/σ∗ and

G(σ∗) = 1 and
∂

∂ς∗
G(σ∗) = − 1

σ∗ (88)

which are used to determine the SAR’s (76) coefficients in Appendix C.1.



Genericity of the Fixed Point Set for the Infinite

Population Genetic Algorithm
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Abstract. The infinite populationmodel for the genetic algorithm,where
the iteration of the genetic algorithm corresponds to an iteration of a map
G, is a discrete dynamical system. The map G is a composition of a selec-
tion operator and a mixing operator, where the latter models the effects of
both mutation and crossover. This paper shows that for a typical mixing
operator, the fixed point set of G is finite. That is, an arbitrarily small per-
turbation of the mixing operator will result in a map G with finitely many
fixed points. Further, any sufficiently small perturbation of the mixing op-
erator preserves the finiteness of the fixed point set.

Keywords: Genetic algorithm, generic property, fixed point, transverse,
transversality

1 Introduction

In this paper we study a dynamical systems model of the genetic algorithm (GA).
This model was introduced by Vose [1] and is further extended in [2] and [3].
The dynamical systems model of the genetic algorithm provides an attractive
mathematical framework for investigating the properties of GAs.

A practical implementation of the genetic algorithm seeks solutions in a fi-
nite search space which we denote Ω = {1, 2, . . . , n}. Each element of Ω can be
thought of as a “species” with a given fitness value; the goal of the algorithm
is to maximize the fitness. Usually there are multiple species with high fitness
value and n is large. In order to avoid local maxima the GA algorithm uses mu-
tation and crossover operations to maintain diversity in the pool of r individuals,
representing the n species. The infinite population model considers an infinite
population of individuals represented by the probability distribution over Ω,

P = (P1, P2, ..., Pn)

where Pi is the proportion of the i-th species in the population. An update of the
genetic algorithm consists of mutation, selection and crossover steps and is repre-
sented in the infinite population model as an iteration of a fixed function G.
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Although the precise correspondence between behavior of such infinite popula-
tion genetic algorithm and the behavior of the GA for finite population sizes has
not been established in detail, the infinite population model has the advantage of
being a well defined dynamical system. Therefore, the techniques of dynamical
systems theory can be used to formulate and answer some fundamental questions
about the GA.

The fixed points are fundamental objects of interest in our study, because in
realistic implementations of genetic algorithms one usually observes convergence
to a fixed point. Convergence to a unique fixed point is automatic when the
quadratic map is a contraction. However, this paper is about a more subtle
situation when the genetic algorithm is not a contraction. Wright and Bidwell
[4] found examples of genetic algorithms with stable period two points, that is,
examples of GAs for which not all solutions converge to a fixed point. These
examples, however, were constructed using mutation and crossover operators
which do not correspond to operators used in practice. In spite of this discovery,
it is clear that one cannot expect to prove convergence to a fixed point for all
genetic algorithms. Thus, the important problem is to carefully define the largest
possible class of realistic genetic algorithms for which all solutions do converge
to a fixed point. This problem is still open.

Wright and Vose [5] considered a class of mappings G that were a composi-
tion of a fixed mutation and crossover maps, and a proportional selection map.
The set of fitness functions that correspond to the proportional selection was
parameterized by the positive orthant. They have shown that for an open and
dense set of such fitness functions, the corresponding map G has finitely many
fixed points.

In this contribution we will take a different path. We consider a class of
mappings G = M ◦ F where F is an arbitrary, but fixed, selection map and M
is a mixing map from a class M described in Definition 2. This class is broad
enough to include all mixing maps formed by a composition of the mutation
and crossover maps described in monographs by Reeves and Rowe [2] and Vose
[3]. We show that for a typical (i.e. open and dense) set of mixing maps, the
corresponding map G has finitely many fixed points.

Theorem 1. Let G = M ◦ F be a composition of a selection map F and a
mixing operator M . Then for a typical mixing operator M ∈ M, G has finitely
many fixed points.

The main tool in the proof of this result is the powerful notion of transversal-
ity. This idea has been successfully used in differential topology and dynamical
systems for over forty years. Before we go into mathematical details, we wish
to illustrate this notion on some simple examples. Consider a scalar function
f(x, a) := x2 + a, that depends on a real parameter a, and let W be the x−axis
in the plane R

2, see Figure 1. Notice that for all parameters a 
= 0 the graph of
f(x, a) either does not intersect W at all (for a > 0) or it intersects W in two
points (for a < 0). Both of these situations are stable under small change in the
parameter a. That is, if there are two intersections for a = a0, then for all a1

sufficiently close to a0 the graph of f(x, a1) also intersects W in two points. A
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WW

a = 0

a < 0

a > 0

Fig. 1. An exceptional value of a corresponds to non-transverse intersection of the
graph of f and W (left figure); typical value of a corresponds to transverse intersection

similar statement is true for no intersection. We observe that the set of these
“stable” values of a (i.e. a 
= 0) is open and dense in the set of all a. The value
a = 0 is exceptional since arbitrary small change in a changes the number of
intersections with W .

We can characterize geometrically the “stable” values of a by observing that
the sum of the tangent space to the graph of f and the tangent space to W at
all points x of intersection generates the tangent space to R

2 at x. This tangent
space is again R

2. In this case we will say that f is transversal to W . For the
exceptional value a = 0 these two tangent spaces at the point of intersection
x = 0 coincide and therefore their sum is a strict subspace of the tangent space
of R

2 at 0. This is a just a sophisticated way of saying that the graph of f and W
“cross” for the “stable” values of a and only “touch” for the exceptional values
of a. Notice that we have to define “crossing” loosely since empty intersection
of the graph of f and W counts as “crossing”.

The fundamental mathematical result we will use states that, under certain
assumptions, the set of parameter values for which a general parameterized func-
tion intersects a given manifold W transversally, is both open and dense in the
set of all parameters.

In proving our result, the essential step is to transform the problem of finite-
ness of the fixed point set to a transversality problem. We will set f(x,M) :=
M(F (x))− x = G(x)− x, where instead of a scalar parameter a we have multi-
dimensional parameter space M that characterizes the set of all admissible mix-
ing operators. If we let W = {0}, then the intersections of the graph of f and
W correspond precisely to the fixed points of G. To prove finiteness of the set
of fixed points, we evoke another general transversality theorem (Theorem 3)
which states that this set has finitely many components for every M for which
we have transversality.

The paper is organized as follows. In Sect. 2 we carefully define the infinite
population model, GA map and the set of admissible mixing operators M. In
Sect. 3 we review transversality and provide the necessary background. In Sect.
4 we prove the main result and conclude in Sect. 5.
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2 The Infinite Population Genetic Algorithm

The genetic algorithm searches for solutions in the search space Ω = {1, 2, . . . n};
each element of Ω can be thought of as a type of individual. We consider a total
population of size r with r << n. We represent such a population as an incidence
vector :

v = (v1, v2, ..., vn)T

where vi is the number of times the individual of type i appears in the population.
It follows that

∑
i vi = r. We also identify a population with the population

incidence vector
p = (p1, p2, ..., pn)T

where pi = vi

r is the proportion of the i-th individual in the population. The
vector p can be viewed as a probability distribution over Ω. In this representa-
tion, the iterations of the genetic algorithm yield a sequence of vectors p ∈ Λr

where

Λr := {(p1, p2, ..., pn)T ∈ R
n | pi =

vi

r
and vi ∈ {0, . . . , r} for all i ∈ {1, . . . , n}

with
∑

i

vi = r} . (1)

We define

Λ := {x ∈ R
n|
∑

xi = 1 and xi ≥ 0 for all i ∈ {1, . . . , n}} .

Note that Λr ⊂ Λ ⊂ R
n, where Λ is the unit simplex in R

n. Not every point
x ∈ Λ corresponds to a population incidence vector p ∈ Λr, with fixed population
size r, since p has non-negative rational entries with denominator r. However,
as the population size r gets arbitrarily large, Λr “becomes dense” in Λ, that is,
∪r≥NΛr is dense in Λ for all N. Thus Λ may be viewed as a set of admissible
states for infinite populations. We will use p to denote an arbitrary point in Λr

and x to denote an arbitrary point in Λ. Thus p always represents a population
incidence vector in a finite population and x the corresponding quantity in infi-
nite population, which is the probability distribution over Ω. Unless otherwise
indicated, x ∈ Λ is a column vector.

The utility of the infinite population model and its relationship with the
finite population models is often discussed. Our result in Theorem 1 implies
that the equilibria of the finite, but large, population model are well separated.
This separation and the number of the fixed points can be precisely linked to
the separation and number of fixed points in the infinite population model. To
see this let pr

j denote a fixed point of the finite population GA of size r for
j = 1, . . . , k . We let p∞j , j = 1, . . . , k, be the finite number of fixed points for
the infinite population model. Assuming that all fixed points are hyperbolic, let
3δ := mini,j ||p∞j − p∞i ||. By continuity, for r > N1 there are a finite number of
fixed points pr

j , j = 1, . . . , k, such that

||pr
j − p∞j || < δ.
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Then for all r > N1

||p∞j − p∞i || < ||pr
j − p∞j ||+ ||pr

j − pr
i ||+ ||pr

i − p∞i || < 2δ + ||pr
j − pr

i ||

and since
3δ < ||p∞j − p∞i ||

we have
||pr

j − pr
i || > 3δ − 2δ = δ. (2)

Select N2 such that 1/N2 << δ. Then for all r > N2 the distance δ between
the fixed points of the finite population model is much larger than the distance
between potential populations.

Let G(x) represent the action of the genetic algorithm on x ∈ Λ, and assume
that G : Λ → Λ is a differentiable map ([3]). The map G is a composition of three
maps: selection, mutation, and crossover. We will now describe each of these in
turn.

We let F : Λ → Λ represent the selection operator. The i-th component, Fi(x),
represents the probability that an individual of type i will result if selection is
applied to x ∈ Λ. As an example, consider proportional selection where the
probability of an individual k ∈ Ω being selected is

Pr[k|x] =
xkfk∑

j∈Ω xjfj
,

where x ∈ Λ is the population incidence vector, and fk, the k-th entry of the
vector f , is the fitness of k ∈ Ω. Define diag(f) as the diagonal matrix with
entries from f along the diagonal and zeros elsewhere. Then, for F : Λ → Λ,
proportional selection is defined as

F (x) =
diag(f)x

fT x
.

We restrict our choice of selection operators, F, to those which are C1, that is,
selection operators with continuous derivatives.

We let U : Λ→ Λ represent mutation. Here U is an n× n real valued matrix
with ij-th entry uij > 0 for all i, j, and where Uij represents the probability that
item j ∈ Ω mutates into i ∈ Ω. That is, (Ux)k :=

∑
i ukixi is the probability an

individual of type k will result after applying mutation to population x.
Let crossover, C : Λ → Λ, be defined by

C(x) = (xT C1x, . . . , xT Cnx)

for x ∈ Λ, where C1, . . . , Cn is a sequence of symmetric non-negative n× n real
valued matrices. Here Ck(x) represents the probability that an individual k is
created by applying crossover to population x.

Definition 1. Let Matn(R) represent the set of n × n matrices with real val-
ued entries. An operator A : R

n → R
n is quadratic if there exist matrices

A1, A2, . . . , An ∈Matn(R) such that A(x) = (xT A1x, . . . , xT Anx). We denote a
quadratic operator with its corresponding matrices as A = (A1, . . . , An).
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Thus, the crossover operator, C = (C1, . . . , Cn), is a quadratic operator ([6]).
We combine mutation and crossover to obtain the mixing operator M := C◦U .

The k-th component of the mixing operator

Mk(x) = xT (UT CkU)x

represents the probability that an individual of type k will result after applying
mutation and crossover to population x. Since Ck is symmetric, Mk is symmetric.
Further, since Ck is non-negative and U is positive for all k, Mk is also positive for
all k. Additionally, it is easy to see check that since

∑n
k=1[Mk]ij = 1, M : Λ → Λ,

and mixing is also a quadratic operator ([6]). Here [Mk]ij denotes the ij-th entry
of the matrix Mk. This motivates the following general definition of a mixing
operator.

Definition 2. Let Matn(R) represent the set of n×n matrices with real valued
entries. We call a quadratic operator, M = (M1, . . . , Mn), a mixing operator if
the following properties hold:

1. Mk ∈ Matn(R) is symmetric for all k = 1, . . . , n;
2. (Mk)ij > 0 for all i, j ∈ {1, . . . , n}, and for all k = 1, . . . , n;
3.
∑n

k=1[Mk]ij = 1 for all j = 1, . . . , n and i = 1, . . . , n.

Let M be the set of quadratic operators M satisfying (1)-(3). It is easy to see
that (3) implies that M ∈ M maps Λ to Λ. We define a norm, || · ||, on M
by considering for M ∈ M, M ∈ R

n3
, and using the Euclidean norm. For an

alternative norm on the set of quadratic operators, see [7].

Definition 3. We set
G := M ◦ F, for M ∈M (3)

to be the complete operator for the genetic algorithm, or a GA map.

We extend the domain of definition of F to the positive cone in R
n, denoted

R
n+. The extension of F is denoted F̃ and is defined by

F̃ (u) := F

(
u∑
i ui

)
.

Thus F̃ |Λ = F, and for x ∈ Λ, DF̃ (x)|Λ = DF (x), the Jacobian of F. Let
R

n
0 := {x ∈ R

n|
∑

i xi = 0}. Since R
n
0 is the tangent space to Λ at x and

F (Λ) ⊂ Λ, DF̃ (Rn
0 ) ⊆ R

n
0 . Because F̃ : R

n+ → Λ, it is also clear that the map
G is extended to a map G̃ : R

n+ → Λ and the preceding remarks apply to G̃
as well. In order to simplify the notation we will use symbols F and G for these
extended functions.

Definition 4. If f(x) = x, a point x is called a fixed point of f .

Definition 5. A property is typical, or generic, in a set S, if it holds for an
open and dense set of parameter values in S.
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3 Transversality: Background and Terminology

This section provides the reader with the necessary background in differential
topology. The material provided below follows [8]. Other references include [9],
[10] and [11].

Let X, Y be n and m dimensional manifolds, respectively. For x ∈ X , we let
TxX denote the tangent space to X at x. For a differentiable map f : X → Y ,
we let dfx : TxX → Tf(x)Y denote the derivative of the map f at the point x. In
the special case that TxX = R

n and Tf(x)Y = R
m, we note that dfx : R

n → R
m

is given by the Jacobian matrix Df(x) ([12]).
The following notation is adopted from [8]. Let A, X, Y be Cr manifolds. Let

Cr(X, Y ) be the set of Cr maps from X to Y .

Definition 6 (Restricted definition from [8] for finite vector spaces).
Let X and Y be C1 manifolds, f : X → Y a C1 map, and W ⊂ Y a submanifold.
We say that f is transversal to W at a point x ∈ X, in symbols: f �x W , if,
where y = f(x), either y /∈W or y ∈W and

(Txf)(TxX) + TyW = TyY .

We say f is transversal to W , in symbols: f � W , if and only f �x W for
every x ∈ X.

We reformulate the example in Figure 1 in terms of Definition 6. Let X :=
[−1, 1], Y := R

2 and let W := {(x, y) ∈ R
2 | y = 0} be the x-axis. We define the

the family of maps fa : [−1, 1]→ R
2 by fa(t) := (t, t2 + a). Then the map f−1 is

transversal to W (Figure 1 right), but f0 is not transversal to W (Figure 1 left).

Theorem 2 (Transversal Density Theorem, [8]). Let A, X, Y be Cr mani-
folds and W ⊂ Y a submanifold. Let ρa : X → Y be a family of maps such that
the correspondence ev(a, x) := ρa(x) is Cr. Define AW ⊂ A by

AW = {a ∈ A|ρa � W} .

Assume that

1. X has finite dimension m and W has finite codimension q in Y;
2. r > max(0, m− q);
3. ev(a, x) � W .

Then AW is residual (and hence dense) in A.

In our example, the set AW := {a 
= 0} and the set A = R. Density of AW in A
means that in an arbitrary neighborhood of the value a = 0, there is a value of
the set AW .

Theorem 3 (Corollary 17.2, [8]). Let X, Y be Cr manifolds (r ≥ 1), f : X →
Y a Cr map, W ⊂ Y a Cr submanifold. Then if f � W :

1. W and f−1(W ) have the same codimension;
2. If W is closed and X is compact, f−1({W}) has only finitely many connected

components.
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As an example, let fa : [−1, 1] → R
2 be as defined above with a 
= 0. Since

W = {(x, y) ∈ R
2|y = 0}, the set f−1

a (W ) consists of finitely many points. In
fact, this set consists of two points when a < 0 and no points when a > 0. Each of
these points is a zero-dimensional submanifold of the dimension 1 interval [−1, 1].
Thus, f−1

a (W ) has codimension 1. Since W is a 1-dimensional submanifold of R
2,

it also has codimension 1. Note that in our example, f−1
0 (W ) = 0 and is a point.

However, we can modify the family fa in such a way that f0(−ε, ε) = 0 and 0 is
still the only value of a where we lack hyperbolicity, see Figure 2. This example
shows that hyperbolicity is necessary for the conclusion of the Theorem 3.

W

a = 0

a < 0

a > 0

[f0(−ε), f0(ε)]

Fig. 2. A modified example from Figure 1. The map f0 maps a subinterval (−ε, ε) into
W .

Observe that the compactness of X is also necessary. Consider the function
g : R → R

2 defined by g(t) = (t, sin t). Then g−1(0) = kπ has infinitely many
components in X = R.

Theorem 4 (Openness of Transversal Intersection, [8]). Let A, X, Y be
C1 manifolds with X finite dimensional, W ⊂ Y a closed C1 submanifold, K ⊂ X
a compact subset of X, and ρa : X → Y be a family of maps such that the
correspondence ev(a, x) = ρa(x) is Cr. Then the subset AKW ⊂ A defined by
AKW = {a ∈ A|ρa �x W for x ∈ K} is open.

In our example, K = X = [−1, 1] is compact and AKW = AW := {a 
= 0}.
The set AKW is open in A = R if a small enough neighborhood, Nε(a), of the
value a ∈ AKW , has Nε(a) ⊂ A. That is, for any a 
= 0, there is a small interval
(a− ε, a + ε) ⊂ A.
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4 Proof of Main Results

Let A = M, where M denotes the set of mixing operators given by Definition
2, and let X = Λ ⊂ R

n and Y = R
n
0 . For M ∈ M, we define a family of maps

ρM (x) : Λ→ R
n
0 by ρM (x) := (M ◦F − I)x. Recall that R

n
0 := {x ∈ R

n|
∑

i xi =
0}. Note that because F, M ∈ C1(Λ, Λ),we also have ρM ∈ C1(Λ, Rn

0 ).
Finally, we define evρ(M, x) : M × Λ → R

n
0 by evρ(M, x) := ρM (x) for

M ∈M and x ∈ Λ. That is,

evρ(M, x) := ρM (x) = M(F (x)) − x .

Finally, note that since G, F are C1, the function evρ is also C1.

Lemma 1. For evρ(M, x) := M(F (x)) − x, rank(d(evρ)) = n− 1.

Proof. Note first that since Λ ⊂ R
n+, the derivative d evρ of evρ, d evρ = D evρ,

is a Jacobian of evρ. Similarly, we note that

D(evρ|(M×Λ)) = Devρ|T(P,y)(M×Λ) .

Because T (Rn
0 ) = R

n
0 , and

T (M× Λ) = {(P, y)|P = (P1, . . . , Pn) with
∑

i

Pi = 0 and y ∈ R
n} ,

it suffices to show that the Jacobian D evρ : T (M×Λ)→ R
n
0 is onto. Thus, for

(P, y) ∈ T (M× Λ), we calculate

D ev(M,x)(P, y) =
[
∂evρ

∂M
,
∂evρ

∂x

](
P
y

)
=

∂evρ

∂M
P +

∂evρ

∂x
y .

By a short computation we get

∂evρ

∂M
P = PF (x) ,

and
∂evρ

∂x
y = 2(MF (x))DF (x)y − y .

Finally, for any z ∈ R
n
0 , and (M, x) ∈ M × Λ, we show there exists (P, y) ∈

T (M× Λ) such that

Dev(M,x)(P, y) = PF (x) + 2(MF (x))DF (x)y − y = z . (4)

We start by choosing y = 0 ∈ R
n. Now, by (4), it suffices to find P = (P1, . . . , Pn)

such that
Dev(M,x)(P, y) = PF (x) + 0− 0 = z . (5)

Because F : R
n+ → Λ, we let u = F (x) ∈ Λ. By (5), we see that for fixed u ∈ Λ,

we want P = (P1, . . . , Pn) such that Pu = (uT P1u, . . . , uT Pnu) = z. Clearly,
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for i = 1, . . . , n − 1, we can choose Pi such that uT Piu = zi. Finally, because
z ∈ R

n
0 , that is

∑
i zi = 0, we see that zn = −

∑
i zi. Thus, for our choice of

P1, . . . , Pn−1,

zn = −
∑

i

zi = −
∑

i

uT Piu = uT (
∑

i

Pi)u ,

and Pn = −
∑n−1

i=1 Pi. Because Pn = −
∑n−1

i=1 Pi, it is clear that
∑n

i=1 Pi = 0,
and for this choice of P = (P1, . . . , Pn) with y = 0 we have Dev(M,x)(P, y) = z.
Because z, M, x were arbitrary, we have shown that Devρ : T (M× Λ) → R

n
0 is

onto. That is, rank(Devρ) = n− 1. ��

Lemma 2. Let evρ :M× Λ → R
n
0 , x ∈ Λ, and M ∈M. Then evρ � {0}.

Proof. Choose W := {0}. Since T0W = {0}, to prove transversality using Def-
inition 6, we need to show that the image (Txevρ)(TxX) = T0Y = R

n−1.
In other words, we need to show that Devρ(x) is surjective. By Lemma 1,
rank(Devρ(x)) = n− 1, and therefore Devρ(x) is surjective and evρ � {0}. ��

Proposition 1. Let M{0} := {M ∈M|ρM � {0}}. Then M{0} is dense in M.
That is, the set of parameter values for which ρM is transversal to {0} is dense
in M.

Proof. We apply the Transversal Density Theorem: Theorem 2. We first note
that by Lemma 2, evρ � {0}, and therefore condition (3) of Theorem 2 holds.
We now verify the remaining conditions (1)-(2).

1. X = Λ has finite dimension m and W = {0} has finite codimension q in
Y = R

n
0 . Because X = Λ, m = n− 1 < ∞. Clearly, the codimension of {0}

in R
n
0 is n− 1. That is, q = n− 1.

2. r > max(0, m− q). Since r = 1, clearly r > max(0, 0) = 0. ��

Proposition 2. The set M{0} is open in M.

Proof. We apply Theorem 4, and therefore start by verifying its hypothesis con-
ditions. ClearlyM, X, Y are C1 manifolds. We take K = X = Λ, and thus K is a
compact subset of the finite dimensional manifold X . Similarly W = {0} ⊂ Y is
closed. By the previous argument, the maps ρM (x) are C1. Thus, all hypothesis
requirements have been met and by Theorem 4,

MK{0} = {M ∈M|ρM �x {0} for x ∈ K = X}

is open in M. ��

Proposition 3. For generic M ∈M,

1. ρM � {0}. That is, the set of parameter values for which ρM is transversal
to {0} is open and dense in M.
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2. The set of parameter values for which ρ−1
M ({0}) has finitely many solutions

is open and dense in M.

Proof. The proof of part (1) follows directly from Lemmas 1 and 2.
We now prove part (2). By part (1), the set of parameter values for which ρM

is transversal to {0} is open and dense in M. Thus by Theorem 3, for this open
and dense set, ρ−1

M ({0}) has only finitely many connected components. We now
show by contradiction that there are finitely many solutions to ρM (x) = 0 in Λ.

For x ∈ ρ−1
M ({0}), let Mx ⊂ ρ−1

M ({0}) denote the connected component with
x ∈ Mx . Assume x is not isolated in ρ−1

M ({0}). Then, there exists a sequence
{xn} ⊂Mx such that xn → x, and by choosing a subsequence {xnk

},

lim
nk→∞

xnk
− x

||xnk
− x|| = v , (6)

where v ∈ Tx(ρ−1
M ({0})). Here v 
= 0 because the terms in the quotient are on

the unit sphere. Since

M ◦ F (xnk
)−M ◦ F (x) = D(M ◦ F )(x) · (xnk

− x) + R (7)

where R is a remainder, then

lim
nk→∞

M ◦ F (xnk
)−M ◦ F (x)

||xnk
− x|| = lim

nk→∞
D(M ◦ F )(x) · (xnk

− x) + R

||xnk
− x|| . (8)

By (6) and (8), and because xnk
, x are fixed points,

v = D(M ◦ F )(x) ·
(

lim
nk→∞

xnk
− x

||xnk
− x||

)
+ lim

nk→∞
R

||xnk
− x|| . (9)

That is,
v = D(M ◦ F )(x) · v + 0, (10)

and v 
= 0 is an eigenvector of D(M ◦ F )(x) with eigenvalue 1. However, since
x ∈ ρ−1

M ({0}, and ρM is transversal to {0} at x, D(M ◦ F )(x) − I is a linear
isomorphism on a finite vector space. Thus, for all v 
= 0, (D(M ◦F )(x)−I)v 
= 0
which is a contradiction. Thus, all the components of ρ−1

M ({0}) only contain
isolated points and each connected component of ρ−1

M ({0}) is itself an isolated
point. Since there are finitely many connected components of ρ−1

M ({0}), there
are finitely many solutions to ρM (x) = 0 for x ∈ Λ. ��

Proof of Theorem 1. By Lemma 3, for M ∈ M{0} ⊂ M, ρM (x) = 0 has
finitely many solutions in Λ. That is, for generic M ∈ M,

ρM (x) = M(F (x)) − x

has finitely many solutions in Λ. Thus solutions to ρM (x) = 0 correspond to
fixed points of G = M ◦ F. ��
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5 Conclusions

In this paper we have shown that given an arbitrary selection function and a
typical mixing function, their composition has finitely many fixed points. This
composition represents an infinite population model of a GA. Even though the
correspondence between the infinite population model of a GA and the finite
population models that are used by practitioners is not straightforward and likely
depends on the details of that implementation, our result adds to the increasing
body of evidence that the infinite population model can give qualitative insights
into the functioning of the GA. Genericity of the finiteness of the fixed point set
is expected for any reasonably rich model, consisting of iterations of a map on
a compact space. Our results can be interpreted as showing that the GA map
and the class of mixing operators constitute such model. That is, as analogously
stated in [5], for a given mixing operator, unless proven otherwise, it is reasonable
to assume that G has finitely many fixed points.

We note that the perturbation from an infinite to a large finite population
model can be viewed as a small perturbation of the infinite population model.
Furthermore, our result in Theorem 1 implies that the fixed points of the large
population limit are separated at least by a constant distance, as shown by (2).
For large enough population sizes, this constant distance is much larger than the
resolution between neighboring states of the GA.

The additional contribution of our work is to once again (after [5]) bring
the attention of the GA community to a set of powerful ideas from differential
topology, centered around the notion of transversality. We believe that these
ideas can be applied in different contexts to many problems in the study of
genetic algorithms.
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Abstract. In the case where the search space has a group structure,
classical genetic operators (mutation and two-parent crossover) which
respect the group action are completely characterized by formulas defin-
ing them in terms of the search space and its group operation. This
provides a representation-free implementation for those operators, in the
sense that the genotypic encoding of search space elements is irrelevant.
The implementations are parameterized by distributions which may be
chosen arbitrarily, and which are analogous to specifying distributions
for mutation and crossover masks.

1 Introduction

This paper extends the theory developed in [RVW02, RVW04] concerning groups
that act transitively on a search space. The special case where the search space
itself has a group structure (so that it acts transitively on itself) is the primary
focus.

One might legitimately wonder what mixing operators for classical Genetic
Algorithms are possible (given reasonable restrictions).1 We have answered such
a question; the main results completely characterize classical genetic operators
– mutation and two-parent crossover – which respect search space symmetries.
1 Admittedly, such questions concerning genetic algorithms are foundational rather

than applied, but this paper was intended for “Foundations Of Genetic Algo-
rithms”...
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The paper begins with motivation, describing how a search space might come
to have a group acting upon it. This is done by way of first discussing neighbor-
hood structures and their symmetries, next considering how neighborhood struc-
tures naturally arise as a consequence of neighborhood operators, and then de-
scribing conditions under which neighborhood operators have symmetries which
may be ascribed to the search space itself. Consequently, the particular group
ascribed to the search space can vary with the chosen neighborhood structure;
more generally, it may be chosen arbitrarily. In any case, a transitive group ac-
tion eliminates bias in the sense that the search space is made to look the same
from every point. Results proved in sections 2 and 3 are probably not new; they
are included as part of the motivation leading up to section 4. Additional mo-
tivation is provided by the fact that other authors have also considered group
structures on the search space [Wei91, Sta96, RHKS02].

In the case where the search space has a group structure, the classical genetic
operators (mutation and two-parent crossover) can be completely characterized
when they commute with the group action. Moreover, they have representation-
free implementations; the genotypic encoding of search space elements is irrele-
vant. Their implementations are parameterized by distributions which may be
chosen arbitrarily, and which are analogous to specifying distributions for mu-
tation and crossover masks.

1.1 Notation

Suppose the finite search space Ω is enumerated as {ω0, . . . , ωn−1}. Without
loss of generality Ω may be regarded as {0, . . . , n − 1} through the association
i #→ ωi.

The notation [expression ] denotes 1 if expression is true, and 0 otherwise.
To maintain continuity with the thread of most relevant results [Vos99b],

[RVW02], [RVW04], the “twist” of the matrix A (see section 4.1) is denoted by
A∗.2 A similar comment is apropos to how group operations are denoted. In the
special case where a group can be expressed as a nontrivial direct sum of normal
subgroups, the best choice would indubitably be ⊕ so as to be consistent with
[Vos99b, RVW04] which are most relevant. This paper, however, concerns the
general case; it uses ◦ to denote the group operation, which is consistent with
[RVW02].

2 Neighborhood Structures

Assume the finite search space Ω has a neighborhood structure: every x ∈ Ω has
a set N(x) ⊂ Ω of neighbors. A neighborhood structure N is equivalent to a
neighborhood graph which has Ω as vertex set and which contains directed edge
x→ y iff y ∈ N(x).

2 We apologize for using superscript asterisk to denote something other than Kleene
Closure...
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Definition 1. A neighborhood structure on a finite search space Ω is a function
N : Ω → 2Ω which to each x ∈ Ω assigns a set N(x) ⊂ Ω of neighbors.

Definition 2. The neighborhood graph corresponding to a neighborhood struc-
ture N has the domain Ω of N as vertex set and contains directed edge x → y
iff y ∈ N(x).

In practice, a neighborhood structure often has symmetries. An automorphism
of N is a bijection π : Ω → Ω such that if y is a neighbor of x, then π(y) is
a neighbor of π(x). Equivalently, it is an invertible map (permutation) on the
vertices of the neighborhood graph which preserves edges.

Definition 3. An automorphism of a neighborhood structure N is a bijection
π : Ω → Ω such that if y is a neighbor of x, then π(y) is a neighbor of π(x).

The set AN of all such automorphisms is the symmetry group of N (it is a
group under function composition since Ω is finite); elements of AN are called
symmetries (of N).

Definition 4. The symmetry group of a neighborhood structure N is the set AN

of all automorphisms of N (it is a group under function composition); elements
of AN are called symmetries of N .

As a consequence of preserving edges of the neighborhood graph, the symmetry
group of N commutes with the neighborhood structure; for all x ∈ Ω and all
π ∈ AN

π ◦N(x) = {π(y) : y ∈ N(x)}
= {z : z ∈ N(π(x))}
= N(π(x))

The theory developed in [RVW02, RVW04] concerns groups that act transi-
tively on Ω : for every x, y ∈ Ω there exists a group element g such that g(x) = y.
A direct consequence of AN commuting with N is that a necessary (but not suf-
ficient) condition for transitivity is that the neighborhood graph be regular (all
vertices have the same degree).

Definition 5. ([Big71]) A group (G, ◦) is said to act on Ω if its elements act
as permutations (of Ω) such that for all g, g′ ∈ G, and all x ∈ Ω,

(g ◦ g′)(x) = g(g′(x))
e(x) = x

where e ∈ G denotes the identity element. Moreover, G acts transitively (on Ω)
if for every x, y ∈ Ω there exists a group element g such that g(x) = y.
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2.1 Neighborhood Operators

A neighborhood structure might arise from a collection of neighborhood opera-
tors on Ω which could be used, for example, by a search algorithm; operator ν
assigns to each x some particular neighbor ν(x). A collection O of neighborhood
operators generates a neighborhood structure,

N(x) = {ν(x) : ν ∈ O}

Definition 6. A neighborhood operator is a function ν : Ω → Ω which to each
x ∈ Ω assigns a neighbor ν(x). The neighborhood structure N generated by a
collection O of neighborhood operators maps x ∈ Ω to the set N(x) = {ν(x) :
ν ∈ O}.

Example 1. Let β(n) denote the �-bit binary expansion of the integer
n, and let ⊕ denote bitwise exclusive-or. The Hamming neighborhood
structure on the set S of binary strings of length � is generated by

O = {νk : ∀x ∈ S . νk(x) = β(2k)⊕ x , 0 ≤ k < �}

Here the operators of O are self-inverse, thus x ∈ N (y) ⇐⇒ y ∈ N (x).
The corresponding neighborhood graph is the Hamming cube.

If, as in the example 1, every element of O is invertible, then O is said to be
invertible.

Definition 7. A collection O of neighborhood operators is said to be invertible
if every element of O is invertible.

The neighborhood structure generated by a collection of neighborhood operators
can be connected—meaning that the neighborhood graph is connected (there is
a directed path from x to y for all x, y ∈ Ω)—yet its symmetry group can fail
to be transitive (see example 2 below).

Definition 8. A neighborhood structure N is said to be connected if there is a
directed path from x to y for all x, y ∈ Ω.

Example 2. Let O be the set of permutations {(120)(453), (210)(543),
(012345), (543210)} (in cycle notation) of Ω = {0, 1, 2, 3, 4, 5}. The col-
lection O of neighborhood operators is invertible (not becauseO is closed
under inverse; what matters is that its elements are invertible). The
neighborhood structure N generated by O is connected. The symme-
try group of N is not transitive because the neighborhood graph is not
regular (bi-directional edges are shown without arrow heads below)

Theorem 1. Let N be the neighborhood structure generated by a collection O
of neighborhood operators. The set G of all bijections of Ω which commute with
all elements of O is a subgroup of AN .
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0

1 2 3 4

5

Fig. 1. Neighborhood graph of N

Proof. If g, h ∈ G and a ∈ O, then g ◦ h ◦ a = g ◦ a ◦ h = a ◦ g ◦ h, so g ◦ h ∈ G.
Moreover, g ◦ a = a ◦ g implies a ◦ g−1 = g−1 ◦ a, and so g ∈ G ⇒ g−1 ∈ G.
Hence G is a group.

Now suppose y = a(x) for some x, y ∈ Ω and a ∈ O, so that (x, y) is an edge
of the neighborhood graph. If g ∈ G, then g(y) = g ◦ a(x) = a ◦ g(x) so that
(g(x), g(y)) is also an edge. Therefore g ∈ AN . �

Let N be the neighborhood structure generated by a collection O of neighbor-
hood operators. Edge x → y in its neighborhood graph is said to have color ν
if ν(x) = y and ν ∈ O (an edge may have several colors). The group G (cor-
responding to O as in Theorem 1) not only preserves edges, it also preserves
colors,

ν(x) = y ⇐⇒ g ◦ ν(x) = g(y)⇐⇒ ν ◦ g(x) = g(y)

The (edge-colored) neighborhood graph (of N) is said to correspond to O. The
group G is called the symmetry group of O; its elements are called symmetries
(of O).

Definition 9. The group of all bijections of Ω which commute with all elements
of O is called the symmetry group of O; its elements are called symmetries (of
O). The (edge-colored) neighborhood graph corresponding to the neighborhood
structure generated by O is said to correspond to O; edge x → y has color ν if
ν(x) = y (for ν ∈ O; an edge may have several colors).

Note that (by Theorem 1) the symmetry group of O is a subgroup of the symme-
try group of the neighborhood graph corresponding to O; the former preserves
edges and color , whereas the latter need preserve only edges. For instance, the
permutation (02)(35) is a symmetry of Figure 1 (i.e., a symmetry of N) but it
is not a symmetry of the collection of neighborhood operators in example 1.

The next section deals with symmetries of O.

3 Transitive Automorphism Groups

When using neighborhood operators as the basis of a search algorithm, the corre-
sponding neighborhood graph is typically connected. As illustrated by example 2,
connectivity is insufficient for the symmetry group of O to act transitively on Ω.
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Nevertheless, when O acts on Ω the situation is quite different. If O is invertible,
the group 〈O〉 generated by O (under function composition) need not necessarily
consist of symmetries of O (unless 〈O〉 is Abelian), but it must act transitively;
requiring that for all x, y ∈ Ω there exist g ∈ 〈O〉 such that g(x) = y is simply
a restatement of connectivity.

Lemma 1. Suppose the neighborhood graph corresponding to a collection O of
neighborhood operators is connected. The only symmetry of O which has a fixed
point is the identity (symmetry g has fixed point x iff g(x) = x).

Proof. Let symmetry g and x, y ∈ Ω be such that g(x) = x. Since the neighbor-
hood graph is connected, there exist a1, . . . , ak ∈ O such that y = a1◦· · ·◦ak(x).
Hence

g(y) = g ◦ a1 ◦ · · · ◦ ak(x) = a1 ◦ · · · ◦ ak ◦ g(x) = a1 ◦ · · · ◦ ak(x) = y

Since y is arbitrary, g is the identity. �

Lemma 1, together with Theorem 17 from [RVW02], implies that if the neigh-
borhood graph corresponding to O is connected, and if the symmetry group G
of O acts transitivity, then there is a natural group structure isomorphic to G
that can be ascribed to the search space itself. If the neighborhood graph corre-
sponding to O is connected and if O is invertible, then the same conclusion holds
with respect to 〈O〉; there is a natural group structure isomorphic to 〈O〉 that
can be ascribed to Ω. These observations are recorded in the following theorem.

Theorem 2. Suppose the neighborhood graph corresponding to a collection O of
neighborhood operators is connected. If the symmetry group G of O acts transi-
tively, then Ω has a group structure compatible with G (the search space can be
given a group structure isomorphic to G such that the action of Ω on itself – via
the group operation – is isomorphic to the action of G on Ω). If in addition O
is invertible, then Ω has a group structure compatible with 〈O〉.

Proof. If G acts transitivity, then—to use the language of [RVW02]—it is a
reduced group action on Ω (the only permutation fixing Ω is the identity), and
Lemma 1 (above) implies that Fix(w) = {0}, for all w ∈ Ω (only the identity
fixes w); therefore Theorem 17 from [RVW02] applies to show that Ω has a group
structure compatible with G.

If O is invertible, the comments preceding Lemma 1 imply the action of 〈O〉
is reduced (the only permutation fixing Ω is the identity). Since ν(w) = w =⇒
ν(g(w)) = g(ν(w)) = g(w) for all g ∈ G, it follows that if ν fixes w then ν is the
identity (since G acts transitively); hence Theorem 17 from [RVW02] applies to
show that G has a group structure compatible with 〈O〉. �

Suppose that one starts with a connected undirected neighborhood graph. For
each edge (x, y) of this graph, define an automorphism a(x,y) of Ω by a(x,y)(x) =
y, a(x,y)(y) = x, and a(x,y)(z) = z for all z 
= x, y. (The permutation a(x,y) is the
transposition that is denoted by (x, y) in cycle notation.) Let O be the collection
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of these automorphisms. We will call the elements of O the edge transpositions
of the graph. Then the graph of the neighborhood structure generated by O
is the graph that we started with, except that loops have been added at each
vertex. One might wonder if the symmetry group corresponding to this O would
give Ω as a group structure as in theorem 2. The following small example shows
that this is not necessarily the case.

Let Ω = {0, 1, 2, 3} and let O = {(0, 1), (1, 2), (2, 3), (0, 3)}, where the ele-
ments of O are permutations written in cycle notation. The corresponding neigh-
borhood graph is the square with loops at each vertex which is connected, so
〈O〉 acts transitively on Ω. But since 〈O〉 consists of all permutations of Ω, the
symmetry group G of O is identity, and theorem 2 does not apply.

The example can be generalized to Ω = {0, 1, . . . , n − 1} by defining O to
be the set of edge transpositions of the edges of any connected graph whose
vertices are Ω. We can show by induction on n that 〈O〉 is the set Sn of all
permutations of Ω. The base case is trivial. The induction hypothesis is that
the edge transpositions of a connected graph on the vertices {0, 1, . . . , n − 2}
generates the set Sn−1 of permutations of {0, 1, . . . , n−2}. There must be an edge
(i, n−1) of the graph that contains n−1. We need to show that Sn−1∪{(i, n−1)}
generates Sn. Let σ be any permutation of Sn \Sn−1, and let j = σ(n−1). Note
that (i, j) · (i, n − 1) · (i, j) = (j, n − 1). Let τ = (j, n − 1) · σ ∈ Sn−1. Then
σ = (j, n− 1) · τ = (i, j) · (i, n− 1) · (i, j) · τ .

In the case where the neighborhood operators mutually commute (which hap-
pens in example 1, for instance), then the following result holds.

Corollary 1. Suppose the neighborhood graph corresponding to a collection O
of neighborhood operators is connected. If O is invertible and if its elements
commute, then its symmetry group is the group 〈O〉 generated by O and Ω has
a group structure compatible with 〈O〉 (the search space can be given a group
structure isomorphic to 〈O〉 such that the action of Ω on itself – via the group
operation – is isomorphic to the action of 〈O〉 on Ω).

Proof. If the bijections of O commute, then 〈O〉 is a subgroup of the symmetry
group G (of O). Since the neighborhood graph is connected, the action of 〈O〉
on Ω is transitive. Therefore, the action of G is also transitive and Theorem 2
applies. Note that | G |= | 〈O〉 |, since the search space has group structures
isomorphic to G and to 〈O〉. It follows that G is actually the same as 〈O〉. �

In the case corresponding to corollary 1, the group structure ascribed to Ω is
commutative. Each element of Ω is identified with a list of those operators that
must be applied in order to reach it from 0. In this case, the search space is
structural : a situation which is dealt with in detail in [RVW04].

4 Implementation

Having described how a search space might come to have a group acting upon it,
and may in fact have a group structure ascribed to it (so that it acts transitively
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on itself via the group operation), consider the issue of designing mutation and
crossover operators for such search spaces.

For the remainder of the paper, assume that Ω does indeed have its own group
structure (the group operation is denoted by ◦). Let m(x) denote the result of
mutating x, and let c({x, y}) denote the result of crossing parents x and y.

The formal requirement for mutation and crossover to commute with the
group (Ω, ◦) is cast within the framework of Random Heuristic Search [Vos99a],
[Vos99b, RVW02]. A population is represented by a distribution p ∈ Λ, where

Λ = {p ∈ Rn : pk ≥ 0,
∑

pk = 1}

and where pi is the proportion of i in the population. An element a of the group
(Ω, ◦) corresponds to a permutation matrix σa : Λ → Λ defined by

(σa)i,j = [i = a ◦ j]

Crossover acts on distribution p by mapping it to C(p) where

C(p)k = pT Mk p

(superscript T denotes transpose) and where the matrix Mk is defined by

(Mk)i,j = Prob{c({i, k}) = k}

Crossover is said to commute with (Ω, ◦) if for all p ∈ Λ and all a ∈ Ω,

C(σap) = σaC(p)

An advantage of considering genetic operators (crossover, mutation, selection)
at the distribution level is that some analysis can proceed with differentiable ob-
jects, and, finite population information is preserved [Vos99b, RVW05, RVW06].

A similar situation holds for mutation; it has a corresponding operator U at
the distribution level, and, it is said to commute with (Ω, ◦) if for all p ∈ Λ and
all a ∈ Ω,

U(σap) = σaU(p)

The definitions above – for what it means for crossover and mutation to commute
with the group (Ω, ◦) – are given to provide context and to be technically accu-
rate. However, they are not displayed for subsequent use in this paper; working
definitions are instead provided by the following theorem.

Theorem 3. Crossover and mutation commute with (Ω, ◦) if and only if for all
w, x, y, z ∈ Ω

Prob{w = m(x)} = Prob{z ◦ w = m(z ◦ x)}
Prob{w = c({x, y})} = Prob{z ◦ w = c({z ◦ x, z ◦ y})}

Proof. Theorem 3 is a rephrasing of Theorems 5 and 6 from [RVW02]. �

4.1 Binary Crossover

Let B be the set of maps from Ω to itself. Given a probability distribution χ

over B, form an offspring from parents u, v ∈ Ω by
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1. choosing an element b ∈ B according to χ,
2. returning (with equal probability) an element from

{v ◦ b(v−1 ◦ u), u ◦ b(u−1 ◦ v)}

This crossover method is called the canonical crossover scheme.

Theorem 4. The canonical crossover scheme commutes with (Ω, ◦).

Proof. Define the function r by

r(u, v, w) =
∑
b∈B

χb[v ◦ b(v−1 ◦ u) = w]

The probability that u and v cross to form w is

s(u, v, w) =
r(u, v, w) + r(v, u, w)

2

For every z ∈ Ω

r(z ◦ u, z ◦ v, z ◦ w) =
∑
b∈B

χb[z ◦ v ◦ b(v−1 ◦ z−1 ◦ z ◦ u) = z ◦ w]

=
∑
b∈B

χb[v ◦ b(v−1 ◦ u) = w]

= r(u, v, w)

It follows from Theorem 3 that crossover commutes with (Ω, ◦). �

Example 3. Let Ω be the set of length � binary strings under the group
operation ⊕ of bitwise exclusive-or (in particular, v−1 = v). For every
k ∈ Ω define the map bk ∈ B by

bk(x) = k ⊗ x

where ⊗ denotes bitwise and. Let χ be a probability distribution that
only assigns non-zero weight to such maps, and thus can be thought of
as a probability distribution over Ω. Therefore,

r(u, v, w) =
∑
b∈B

χb[v ⊕ b(v ⊕ u) = w]

=
∑
k∈Ω

χk[v ⊕ (k ⊗ (v ⊕ u)) = w]

=
∑
k∈Ω

χk[v ⊕ (k ⊗ v)⊕ (k ⊗ u) = w]

=
∑
k∈Ω

χk[((k ⊕ 1)⊗ v)⊕ (k ⊗ u) = w]

=
∑
k∈Ω

χk[(k̄ ⊗ v)⊕ (k ⊗ u) = w]
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where 1 is the string of all ones and k̄ is the binary complement of k.
It follows that the crossover scheme implements crossover by masks (see
[Vos99b]).

According to Theorem 2 of [RVW02], every two-parent crossover commuting
with (Ω, ◦) is completely determined by a mixing matrix M with the property
that for all i, j, k ∈ Ω,

Prob{c({i, j}) = k} = Mk−1◦i, k−1◦j

Moreover, Theorem 19 of [RVW02]3 implies that M = A∗ for some row stochastic
matrix A, where the twist A∗ of A is defined by

A∗
u,v = Au−1◦v, u−1

In particular, A = M∗∗, since the twist operator has order three (i.e., A = A∗∗∗

for every matrix A). Another property of the twist is that A∗T = AT∗∗. Since
mixing matrices are symmetric,

2M = A∗ + A∗T = (A + AT∗)∗

and therefore
1
2 (A + AT∗) = M∗∗

Theorem 5. Given any row stochastic matrix A, there exists a probability dis-
tribution α over B such that

Ai,j =
∑
f∈B

αf [f(i) = j]

Moreover, given any such α, the formula above defines a row stochastic matrix.

Proof. Any matrix having the form above is row stochastic, since∑
j

Ai,j =
∑
f∈B

αf

∑
j

[f(i) = j] =
∑
f∈B

αf = 1

Conversely, if α is defined by

αf =
∏
k∈Ω

Ak,f(k)

then, using the identification f ↔ 〈f0, . . . , fn−1〉 where fi = f(i),∑
f∈B

αf [f(i) = j] =
∑

f0∈Ω

∑
f1∈Ω

. . .
∑

fn−1∈Ω

(
∏
k∈Ω

Ak,fk
)[fi = j]

3 The wording of Theorem 19 is directed towards constructing mixing matrices, hence
the requirement to symmetrize (mixing matrices are symmetric). If one is represent-
ing a mixing matrix (see the discussion before Theorem 19), there is no need to
symmetrize; mixing matrices are by definition symmetric.
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=
∑

f0∈Ω

A0,f0

∑
f1∈Ω

A1,f1 . . .
∑

fn−1∈Ω

An−1,fn−1 [fi = j]

=
∑
fi∈Ω

Ai,fi [fi = j]

= Ai,j �

For every f ∈ B, define the function f̂ ∈ B by

f̂(x) = x ◦ f(x−1)

The transformation ̂ : B → B is a bijection (it is self-inverse).

Theorem 6. Every two-parent crossover commuting with (Ω, ◦) is an instance
of the canonical crossover scheme.

Proof. By what has been explained above, it suffices to choose the distribu-
tion χ in the canonical crossover scheme such that the resulting probability of
obtaining k by crossing parents i and j (via the canonical scheme) is

Mk−1◦i, k−1◦j (1)

Define χ by
χf = 1

2 (αf + αf̂ )

where αf is the distribution referred to in Theorem 5 for A = M∗∗. Note that
χf = χ

f̂ , and the quantification f ∈ B is the same as f̂ ∈ B. The probability of
obtaining k is

1
2

∑
f∈B

χf [j ◦ f(j−1 ◦ i) = k] + 1
2

∑
f̂∈B

χ
f̂ [i ◦ f̂(i−1 ◦ j) = k]

= 1
2

∑
f∈B

χf [j ◦ f(j−1 ◦ i) = k] + 1
2

∑
f∈B

χf [i ◦ (i−1 ◦ j) ◦ f(j−1 ◦ i) = k]

=
∑
f∈B

χf [j ◦ f(j−1 ◦ i) = k]

= 1
2

∑
f∈B

αf [f(j−1 ◦ i) = j−1 ◦ k] + 1
2

∑
f∈B

αf̂ [f(j−1 ◦ i) = j−1 ◦ k]

Setting u = j−1 ◦ i, v = j−1 ◦ k, and re-indexing the second sum in the last line
above yields

1
2

∑
f∈B

αf [f(u) = v] + 1
2

∑
f̂∈B

αf [f̂(u) = v]

= 1
2Au,v + 1

2

∑
f∈B

αf [u ◦ f(u−1) = v]

= 1
2Au,v + 1

2Au−1, u−1◦v
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= 1
2 (A + AT∗)u,v

= M∗∗
u,v

= Mv−1 ,v−1◦u

= Mk−1◦j ,k−1◦i

This agrees with (1) since M is symmetric. �

4.2 Mutation

Theorem 20 of [RVW02] and the Corollary following it describe how to imple-
ment mutation: given a probability distribution μ over Ω, mutate j ∈ Ω by

1. choosing an element k ∈ Ω according to μ,
2. returning the element j ◦ k

According to the Theorem, all possible mutation operators which commute with
(Ω, ◦) are of this form.

Example 4 Let Ω be the set of length � binary strings under the group
operation of bitwise exclusive-or. Then the mutation scheme above im-
plements mutation by masks.

Mutation can be seen as a special case of crossover, in the sense that the
resulting child will be the mutation of some parent. For each element k ∈ Ω
define the map bk ∈ B by

bk(x) = x ◦ k

Using these maps to implement crossover (nonzero probability is assigned by χ

only to such maps), the set of possible children resulting from parents u, v and
map bk is

{v ◦ bk(v−1 ◦ u), u ◦ bk(u−1 ◦ v)} = {u ◦ k, v ◦ k}

Moreover, choosing χ to satisfy

χbk
= μk

arranges for the resulting child (of crossover) to not only be the mutation of a
parent, but to occur according to the probabilities specified by μ.

5 Conclusion

This paper introduces neighborhood structures and their symmetries, and de-
scribes how neighborhood structures naturally arise as a consequence of neighbor-
hood operators. Conditions are given under which neighborhood operators have
symmetries which may be ascribed to the search space itself. This motivates—by
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providing a concrete example—the situation with which the paper is primarily con-
cerned; the search space itself has a group structure.

Irrespective of how or why the search space may have a group structure, the
main result is that those classical genetic operators (mutation and two-parent
crossover) which respect the group action are completely characterized.

Formulas are given which define such genetic operators in terms of the search
space and its group operation. This provides a representation-free implemen-
tation for those operators, in the sense that the genotypic encoding of search
space elements is irrelevant. The implementations are parameterized by distri-
butions which may be chosen arbitrarily, and which are analogous to specifying
distributions for mutation and crossover masks (when specialized to a classical
fixed-length binary GA, the standard crossover and mutation operators defined
by masks result).
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Abstract. We show that a fitness function, when taken together with
an algorithm, can be reformulated as a set of probability distributions.
This set can, in some cases, be equivalently viewed as an information vec-
tor which gives ordering information about pairs of search points in the
domain. Certain performance criteria definable over such an information
vector can be learned by linear regression in such a way that extrap-
olations can sometimes be made: the regression can make performance
predictions about functions it has not seen. In addition, the vector can
be taken as a model of the fitness function and used to compute features
of it like difficultly via vector calculations.

1 Introduction

Genetic algorithms (GAs) are problem independent heuristics which have been
reported to perform relatively well on problems for which only partial knowledge
is available. One of the main challenges of the field of evolutionary computation
is to predict the behavior of GAs. In particular, the goal is to be able to classify
problems as hard or easy according to the performance GA would be expected
to have on such problems, before actually running the GA.

A first avenue in this direction was the Building Block (BB) hypothesis [8],
which states that a GA tries to combine low, highly fit schemata. Following the BB
hypothesis the notion of deception [8,6] isolation [9] and multimodality [19] have
been defined. These were able to explain a variety of phenomena. Unfortunately,
they did not succeed in giving a reliable measure of GA-hardness [10,11].

Given the connection between GAs and theoretical genetics, some attempts
to explain the behavior of GAs were inspired by biology. For example, epistasis
variance [4] and epistasis correlation [15] have been defined in order to estimate
the hardness of a given real world problem. NK landscapes [2,13] use the same
idea (epistasis) in order to create an artificial, arbitrary, landscape with a tun-
able degree of difficulty. These attempts, too, did not succeed in giving a full
explanation of the behavior of a GA [11,16].

Finally, fitness distance correlation [12] tries to measure the intrinsic hardness
of a landscape, independently of the search algorithm. Despite good success, fit-
ness distance correlation is not able to predict performance in some scenarios [11].

The partial success of these approaches is not surprising. Several difficulties
present themselves when developing a general theory that explains the behavior
of a GA and is able to predict how it will perform on different problems.

C.R. Stephens et al. (Eds.): FOGA 2007, LNCS 4436, pp. 123–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A GA is actually a family of different algorithms. Given a problem, the GA
designer first decides which representation (e.g. binary, multiary, permutation
or real numbers) to use, then how to map the solution space into the search
space, and finally which operator(s) (mutation, crossover) to use. Moreover,
there are limited concrete guidelines on how to choose a representation and
a genotype-phenotype mapping. Indeed this is a very difficult task. Different
genotype-phenotype representations can completely change the difficulty of a
problem [7]. There have been attempts to evolve the right representation [1] and
there are some general design guidelines [14,18,7]. However, the reality is that
the responsibility of coming up with good ingredients for a GA is still entirely
on the GA designer.

In this paper we show that a fitness function, f , when taken together with
an algorithm, can be reformulated as a vector of probability distributions, Pf

(section 2). Following this decomposition, we are able to derive a first order
approximation to the performance of Randomized Search Heuristics (RSHs).
Using the GA as an example, we show that for small problems regression can be
used to learn the coefficients of a linear model and predict the performance for
unseen problems.

Using our construction, a measure of distance between two functions can be
defined. We suggest to measure problem difficulty by measuring the distance
between a function and the easiest possible function for an algorithm.

We measure the exploration ability of the algorithm as the expected entropy
of the distribution that the selection mechanism defines (given a particular func-
tion) over the different search states. High values of entropy indicate that the
expected performance of GA over the function is poor.

Due to the size of the sequence of probability distributions Pf , the measure-
ment suggested in section 2 cannot be used in practice. In section 3 we argue
that Pf can (at least in some cases) be equivalently viewed as an information
vector V , which gives ordering information about pairs of search points in the
domain. While this is an approximation, it allows us to make concrete measure-
ments and test our assumptions empirically. Section 3.1 suggests a first order
approximation to the performance of RSHs on V . This is then tested empirically
(section 4.1) on toy problems (V is much smaller than Pf however it is still too
big). In section 3.3 we consider an indicator to the expected entropy defined in
section 2.3. Using the first order approximation we show that the entropy may
imply bounds on the expected performance. Finally, in section 3.2 we consider a
vector Vmax as the equivalent of the easiest fitness function. We argue that the
distance between any other vector V and Vmax can be used as an indication to
problem difficulty. This is corroborated by experiments in section 4.2.

2 Algorithmic-Decomposition of the Fitness Function

Once all the parameters of a heuristic are chosen (i.e., representation, neighbor-
hood structure, search operators etc.) the performance of the heuristic depends
solely on the fitness function being optimized. In this section we show that it is
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possible to represent the function as k independent parameters (the actual num-
ber depends on the algorithm). We refer to this decomposition of the function
as the information content of the function. We suggest to use a greedy criterion
to measure the performance and derive two measurements of problem difficulty.

Let X denote a finite search space and f : X → Y a function. Let F denote
all possible fitness functions. Using Vose’s notation [21], RSHs can be thought
of as an initial collection of elements Ψk ∈ Ψ chosen from some search space X
together with a transition rule τ which produces from the collection Ψk another
collection Ψl. A collection of elements is a multiset of X . We use the term search-
state to denote a particular collection. The set of all possible such collections,
the state-space, is denoted by Ψ . Without loss of generality, we assume a notion
of order in Ψ . The search is a sequence of iterations of τ : Ψk

τ→ Ψl
τ→ · · · .

In reality, the transition rule τ(Ψi, f) if often a composition τ = χ ◦ ξ(Ψi, f)
where ξ(Ψi, f) denotes a selection operator, and χ can be thought of as the
navigation operator. The selection phase identifies solutions with high fitness
value, the navigation operator samples accordingly new solutions from X .

In order to make a clear distinction between the two operators (stages) it
is useful to think of an output of the selection operator, a multiset, s, which
represents a possible way to choose (or select) solutions from Ψi. For example, in
GAs, given a particular population, Ψi, s is a possible mating pool. For a (1+1)
evolutionary strategy, s can be either the parent or the offspring. Given a state
Ψi, we denote by Si all possible ways of selecting points. That is, Si is a set
of multisets, each multiset, s ∈ Si, corresponds to one possible way of selecting
points.

The dependency of the performance of a search algorithm on f is reflected by
a probability distribution, P i

f , that the selection mechanism defines for each state
over Si. The particular multiset of solutions, s, that the algorithm selects, being
the only argument for the navigation operator, defines (possibly, stochastically)
the next state of the search. We define the information content of f as the set
of all such distributions.

Definition 1. The information content of a fitness function f is the set Pf =
{P 1

f , P 2
f , ..., Pn

f } which gives for each state, Ψi the probability distribution P i
f used

in the selection phase.

Usually, the algorithm does not define explicitly a probability distribution over
Si, rather, a distribution over single solutions from Ψi. For example, binary
tournament selection defines the probability of selecting one of two possible
solutions as follows:

Pr
tmt
{x | {x, y}} = δ(f(x) > f(y)) + 0.5δ(f(x) = f(y)) (1)

where the function δ(expr) returns 1 if expr is true, and 0 otherwise. This is
used for a state (population) bigger than two points, by selecting, iteratively,
uniformly at random, two points from Ψi and applying equation 1:

Pr(x | Ψi, f) = Pr{x, x | Ψi}+
∑
x �=y

Pr{x, y | Ψi} · Pr
tmt
{x | {x, y}} (2)
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Finally, P i
f , the probability of selecting a particular multiset, s, is obtained as

follows:

P i
f (s | Ψi, f) =

∏
x∈d

Pr(x | Ψi, f). (3)

As previously mentioned, we focus only on the selection phase of the algo-
rithm. Our analysis is done under the assumption that all the parameters of the
algorithm (including the choice of representation or neighborhood structure) are
defined. In this case, the performance of the algorithm depends on the fitness
function alone, or using our formulation, the information content of the fitness
function.

Since for each f ∈ F , Pf is properly defined, the set of all possible fitness
functions F corresponds to a similar set, denoted by PF of probability distribu-
tions. Let P(a, f) denote the performance of the algorithm, a, on the function f .
We assume that P indicates the efficiency of the algorithm. It can, for example,
denote the expected number of fitness evaluations required to find an optima
point, but can be more general (e.g., expected number of generations for GA).
We assume that the initial state is chosen uniformly at random and so, when
the expectation is done over multiple runs, there is always some probability of
the global optimum to be selected. Since we assume that a is fixed we consider
the performance function as follows:

P : PF → R

2.1 Greedy Criteria for Performance

Having no a priori assumption about Pf is equivalent to assuming that each
P i

f ∈ Pf is a uniform distribution over Si. In that case, a distance between two
states, d(s, Ψj), can be defined as the expected first hitting time of a random
walk starting from s and reaching Ψj.

Assuming that the algorithm tries at each step to minimize the distance to an
optimum state a greedy criterion for the performance can be defined. Assuming
that the optima is known, the efficiency of P i

f can be measured as the expected
distance at time step t + 1 to an optimum state – that is,

∑
P i

f (s)d(s, Ψopt)
where Ψopt denotes a state which contains an optimum point. This suggests that
the effect of each variable of the function P can be evaluated, to some extent,
independently. Since, such an analysis can be done only if the global optimum
is given, we write explicitly P(Pf , xtarget) where Pf is the information content
of the function f and xtarget denotes the global optimum.

2.2 Distance and Performance

Following this line of reasoning, it is possible to define a distribution Pfopt such
that d(s, Ψopt) is minimized for each P i

fopt
. The accuracy of any other distribution

Pf can be evaluated by comparing how similar it is (e.g., using the expected
Kullback-Leibler divergence) to Pfopt .
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2.3 Number of Ties and Entropy

One thing that lead to poor performance in classical AI search is ties between
competing alternative successor states [17]. This is because a searcher is then
forced to either explores all of them or chooses one arbitrarily. The same happens
in RSHs when a distribution P i

f is uniform (or almost uniform). In that case,
the algorithm chooses the next state uniformly at random. Clearly, if this is the
case for all P i

f ’s the algorithm performs random search.
A natural way of measuring the frequency of ties for stochastic algorithms is

to consider the entropy of the distribution defined over all possible successors.
Entropy measures how uniform a distribution is, that is, the larger the entropy
the less informed the algorithm is.

Definition 2. The entropy, H(P i
f ), of the function f for the state Ψi, is defined

as:
H(P i

f ) = −
∑
s∈Si

P i
f (s) log P i

f (s)

Depending on the function f , different search states, have different probabilities
to occur in a run. For example, RSHs optimizing the Ridge function [11] are very
likely to sample a state which contains the solution x = 0n. So, we measure the
overall effect of ties as the expected entropy:

E[H(f)] ≡
∑

i

Pr(Ψi)H(P i
f )

where Pr(Ψi) denotes the probability that the state Ψi will be sampled during
a run.

When E[H(f)] is maximal, either the function is almost flat, or the selection
mechanism is random. The needle-in-a-haystack (NIAH) is a well known example
for this scenario: the fitness of all the solutions but the global optimum equals 0.
The performance of RSH on the NIAH is bounded from below by (|X |+1)/2 [5]
which suggests that high expected entropy implies hardness. On the other hand,
when E[H(f)] = 0 nothing can be said about the performance (which depends,
in this case, solely on the relation between the search operators and the fitness
function). The effect of intermediate values of entropy on performance is more
difficult to asses. Presumably, the higher the entropy the closer the performance
to that of a random search. Under the first order approximation considered in
the next section – this is precisely the case.

It is worth mentioning that NP-hard problems exist where the expected en-
tropy is maximal. SAT is an obvious example: from the black box perspective,
a SAT instance is a variant of the NIAH with possibly more than one needle.
Interestingly, while the fitness distribution of many MAXSAT problems is not
flat, a NIAH-type of MAXSAT problem can be generated for n bit space using,
for example, the following formula:⋂

i≥0

(xi

⋃
j<i

¬xj)
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where xi ∈ X are literals. This is definitely not a typical case, however, this is a
clear example for important problems for which the entropy, from the black box
perspective, is maximal.

3 Approximation of the Performance Function

The decomposition of f to Pf is precise, however, due to its size, it cannot be
used in practice. In this section we define a simpler decomposition, in which
every function f is associated with a vector V . In the reminder of the section we
relate the material in section 2 to this simpler model. In particular, section 3.1
introduces a first order approximation to the performance. Section 3.2 defines the
distance between a vector V to an optimal vector Vmax as a predictive measure
of problem hardness. Finally, in section 3.3 the entropy of f is approximated by
using V .

The size of |Ψ | and |Ψi| for realistic search algorithms is usually bounded. For
example, genetic algorithms typically use a population of fixed size, the size of
a tabu-list is bounded and local-searchers often consider only two solutions at
any given time. In order to have a more concrete formulation we will restrict our
attention to algorithms that use a comparison of pairs of solutions in the search
space. As illustrated in section 2, for these algorithms, equation (1) (the prob-
ability, given two solutions, that one is selected) is the only one that considers,
explicitly the fitness function. Equation (2) and then (3) (the actual distribution,
P i

f ) depend only on Pr
tmt

.

The codomain is the function Pr
tmt

is the set of probabilities {0, 0.5, 1}. Equiva-

lently to equation (1), given a function f , we define the following indicator function

t(xi | xi, xj) =

⎧⎪⎨⎪⎩
1 if f(xi) > f(xj),
0 if f(xi) = f(xj),
−1 otherwise.

(4)

The codomain for t, {−1, 0, 1}, was chosen for the purpose of the approximation
we use later in the section.

In our simplified model we define the information content of a function as
a tuple (X, t) including a set X of configurations (the search space) and an
indicator function t : X ×X → {1, 0,−1} . For every pair (xi, xj) of elements in
X , t indicates the preference (if any) of the algorithm for one of the solutions.
Naturally, the function t can be represented as an |X | × |X | information matrix
M with entries mi,j = t(xi, xj).

It is important to note that not all information matrixes can be associated
to a fitness function (the information matrix not necessarily represents a partial
order). We will call invalid those information vectors that cannot be derived
from corresponding fitness landscapes.

Since t(xi, xj) = −t(xj , xi), the matrix M presents symmetries with respect
to the main diagonal which reduces the number of available degrees of freedom
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to the elements above (or below) the diagonal. So, in order to represent an infor-
mation matrix more concisely, we use the following vector to store the relevant
(above diagonal) entries in the information matrix:

V = (v1, v2, ..., vn) = (m1,2, m1,3, ..., m|X|−1,|X|), (5)

where n = (|X |2−|X |)/2. Throughout the paper, we use the matrix notation only
to illustrate, graphically, some concepts, otherwise we use the vector notation.

3.1 A First Order Approximation

The performance function P, using our model, is a function of V and, as discussed
in section 2, the target solution, xtarget. That is, P : V ×X → R. This may be
a very complicated function. However, one might wonder whether a first order
approximation

P(V, xtrgt) ≈ c0 +
n∑

i=1

civi. (6)

could be sufficient in order to model, to some extent, the performance of a
simple GA.1 We denote the vector C = {ci} as the performance vector. The
approximation to the performance can be written in a vector notation as:

P (V, xtrgt) ≈ c0 + C · V (7)

In order to calculate the coefficients ci we can apply statistical or machine
learning techniques. For a fixed xtarget, a training set is made up of pairs of the
form (Vk,Pk), k = 1, 2, · · · , where Vk is a particular information vector – an
input for the learner – and Pk is the corresponding performance measure – the
target output for the learner. Ideally, we would want Pk = E[P(Vk)] (where the
expectation is over multiple runs). Since we do not know the function P(V ),
we need to obtain the target values Pk by some other means. These values, for
example, can be estimated by averaging the performance recorded by running
the algorithm a suitably large number of times over the particular landscape
in question. In order to estimate the coefficients ci we apply multivariate linear
regression over our training set.

Because of the dimensionality of C, this approach can only tackle small land-
scapes (e.g., 3 loci). In the following section, however, we develop an approach
based on a notion of distance which allows us to apply our model for bigger land-
scapes (14 bits). In principle, an indication to the performance can be obtained
also for realistic landscapes. However, in this case, one has to sample V and so
the sampling noise is compounded with the errors already present due to the
linearity of the approximation, resulting in unacceptable errors. As providing a
new predictive measure of problem difficulty is not our main objectives, we do
not explore scalability issues further in this paper.

1 The purpose of approximating V rather than Pf , is first and foremost, to be able to
validate the first order approximation empirically.
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3.2 A Predictive Measure of Problem Difficulty

In section 2.2 a distance between Pf and an optimal Pfopt was suggested as an
indication to problem difficulty. However, this distance cannot be computed in
practice. The model, V , makes it possible to calculate this distance explicitly.
In this section we give an indication to problem difficulty which is based on a
distance between an information vector, V , and an optimal information vector
Vmax. We conclude this section by arguing that instead of Vmax, which is hard to
compute, we can use the information vector of a known easy problem, making it
possible to estimate the distance without calculating the performance vector C.

We begin by assuming that C is known. Therefore it is easy to construct
an information vector Vmax = (vmax1 , · · · , vmaxn

) which contains only positive
information. The performance of an algorithm on such a landscape is maximal:

vmaxi
= argmax

vi

[civi], (8)

Optimal information vectors for a given set of coefficients ci (algorithm) are
those where vi = 1 for all i where ci > 0, vi = 0 for all i for which ci < 0, and
vi takes any value for all the remaining i’s. The worst possible landscapes, Vmin

are constructed similarly (note vmini = −vmaxi for all i where ci 
= 0).
Given a landscape V , each entry vi for which vi 
= vmaxi , gives an indication

to the expected difficulty of V . More generally, the number of non-matching
entries between V and Vmax is a rough indicator of problem difficulty. This is
only an indicator because we do not consider the magnitude of the coefficients
ci, only their sign. We define the number of non-matching entries between two
landscapes V1, V2 as the distance d(V1, V2):

d(V1, V2) =
1
n

∑
i

|v1i − v2i |. (9)

For landscapes without any 0 elements, the distance between two landscapes
is the proportion of non-matching entries in the two vectors representing the
landscapes.

The distance d(Vmax, V ) provides an indication to the difficulty of V . How-
ever, the set of coefficients C cannot be calculated for realistic problems, and
hence Vmax cannot be calculated. Instead, in the empirical validation we use an
estimation of Vmax. This can be any landscape which is known to be very easy
to optimize, Veasy (e.g., ONEMAX for GA). Once Veasy is given, the distance
can be calculated and the hardness approximated. More formally, we propose to
use as an indicator of problem difficulty the quantity

h(V ) = d(V, Veasy), (10)

where h is mnemonic for “hardness” and d(·, ·) is a distance measure between
landscapes.

h(V ) gives an indication to problems hardness. The precision of this indica-
tor depends, first of all, on the first order approximation assumption. Moreover,
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since it does not consider the magnitude of the coefficients ci, it depends also
on their distribution. Finally, since we use Veasy to approximate Vmax it also de-
pends on the distance, d(Vmax, Veasy), between the two. Despite these numerous
approximations, as we will show in section 4.2 the approach produced very good
results, suggesting that all approximations (including the pseudo-linearity of the
performance function) are reasonable.

3.3 Indication for the Expected Entropy

In section 2.3 we argued that the number of ties for stochastic search algorithms
can be measured as the expected entropy of the distribution P i

f . However, this
cannot be done in practice. Using the vector V we suggest to use as a replacement
for the expected entropy the average number of pairwise ties, denoted H(V ),
which can be easily calculated:

H(V ) ≡ 1
n

∑
i

δ(vi = 0)

In the following we will still refer to H(V ) as the entropy of an information
vector.

The first order approximation defined in the previous section suggests that
the entropy gives an upper bound to the magnitude to which the algorithm can
perform either better or worse than a random search. Performance is measured as
P (V ) = c0 +

∑
vici. H(V ) counts the number of entries with a value equal to 0.

Clearly, the larger H(V ) the smaller the deviation |P (V )−c0| of the performance
from random search can be.

H(V ) can be used in practice to calculate an indication to the entropy of the
fitness function. This can be done by estimating the fitness distribution of the
function, for which several methods exists (e.g., [20]). Once this is done, the num-
ber of solutions with equal fitness values can be estimated. We already gave in
section 2.3 examples to NP-hard problems with maximum entropy. Intermediate
values of entropy can help to tune the exploration–exploitation tradeoff of the
algorithm: the higher H(V ) the more explorative (or randomized) the algorithm
is. Presumably, the mutation rate for such functions should be smaller (and the
other way around). We plan to investigate this in future research.

4 Empirical Evaluation

It is hard to assess mathematically the accuracy of our framework. This is be-
cause the framework is applicable to search algorithms in general, but, poten-
tially, each algorithm has a different performance function P (V ). In addition, it
is exceptionally hard to build an explicit formulation for this function, even when
considering a specific search algorithm (e.g., a GA). So, empirical validation is
the only viable strategy.

Focusing on GAs, in this section, we describe empirical evidence which
strongly corroborates the framework. In particular, we show that the perfor-
mance vector can be used in order to predict the performance of the algorithm



132 Y. Borenstein and R. Poli

on unseen problems. In Section 4.1, we conduct an exhaustive analysis on small
landscapes (for the search space of binary strings of length 3) and show that this
is indeed the case. Then, moving away from landscapes of a small size towards
more realistic sizes (14 bits), in Section 4.2 we use various examples of known
problems from the literature (e.g., multi modal landscapes, NIAH, MAXSAT,
etc.) in order to show that the hardness of a problem can be estimated by mea-
suring its distance from an easy reference landscape using Equation 10.

4.1 Exhaustive Analysis

In this section we test our main hypothesis and we show that our framework can
be used in order to estimate the performance of a GA. Since this requires a full
knowledge of the performance vector, we provide results for small landscapes.

We used a simple GA with one-point crossover applied with 100% probability.
The takeover time (i.e., the time required for the entire population to converge to
the target solution) was used as the performance measure (that is, in this case, we
consider minimization). We used a population size of 14. The maximum number
of generations was 500. The search on each landscape was repeated 1000 times
so as to obtain accurate averages. The target solution (global optimum) was
excluded from the first generation.

The experimental setup might look unusual. What is the purpose of using
a population of size 14 and 500 generations to explore a search space of size
8? We decided to choose these settings in order to get higher resolution for
the performance of a GA. For this purpose, the performance measure we chose
is the takeover time (rather than, for example, the number of generations it
takes to sample the optimum). The takeover time depends, once the optimum is
sampled, on the selection pressure. However, firstly, we assume that the easier
the landscape, the more copies of the optimum will be in early generations and
so the faster the takeover time will be and secondly, since we use a very low
selection pressure (tournament of size 2), the influence of a random occurrence
of an optimum will not be crucial.

In a first experiment, we measured the mean takeover time for all possible valid
landscapes. These are landscapes which can be derived from a fitness function
and where none of the elements is 0. It is important to emphasize that the target
solution was fixed. Therefore, we were measuring the performance of a GA on
all possible landscapes given that the optimum is at a particular position in
the search space. Since the size of the search space X is 8, the reduced search
space X ′ is of size 7 and, so, we have 7! = 5040 possible landscapes. In order
to estimate the performance vector (Equation 6) we used multivariate linear
regression on the results obtained from running the GA over all such landscapes.
The correlation coefficient between observed and predicted performance is 0.935.

In order to verify whether the linear approximation to P (V ) generalizes well,
we sampled 1000 additional landscapes out of the entire space of possible infor-
mation vectors (i.e., including invalid landscapes, see Section 3). The correlation
between prediction and observation is still very high (0.923), suggesting good
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generalization. For more details about the multivariate linear regression the co-
efficients obtained and a possible interpretation see [3].

4.2 Estimation of Problem Hardness

In the previous section we have shown that our framework can be used in order
to accurately estimate the performance of a GA and assess problem difficulty.
However, it is clear that a direct estimation of the performance vector can only be
used for small search spaces. In this section, rather than using the performance
vector directly, we use the ideas presented in Section 3.2 to see if the approach
can be applied to more practical scenarios.

In Section 3.2 we argued that the hardness of a problem can be estimated us-
ing the distance of its information vector from the optimal landscape Vmax. Since,
in general, the optimal landscape is not known, we proposed to use an approx-
imation, Veasy, instead (Equation 6). The question now is which easy problem
to choose. We know from many empirical studies that unimodal problems tend
to be GA-easy, the Onemax problem being a glowing example. The Onemax be-
longs to the following more general class of functions: f(x) =

∑
i δ(xi = xtargeti

)
where xtarget is the global optimum. Onemax, is a specific case, where xtarget is
the string of all ones. In this work we decided to use the information vector Veasy

derived from f(x) as an approximation of the optimal landscape Vmax.
The information vector and the performance function are defined for a fixed

target solution. If we change the target solution the same information vector
can change from being easy to being difficult (e.g., consider the information
vector induced by the Onemax function where we change the optimum to being
the string 000). So, the distance between landscapes must be computed for land-
scapes with the same global optimum. This requires knowing the global optimum
in advance.

In the following experiments, we calculated h(V ) as the distance between the
actual landscape induced by a problem and the one induced by the function f(x)
using the global optimum of the problem as xtarget. We used a simple GA with
uniform crossover applied with 100% probability and mutation applied with 10%
probability. The search space included binary strings of 14 bits. The population
size is 20. The first generation in which the optimum was found was used as the
performance measure. The results are averages of 100 runs.

The remainder of this section is organised as follows. First we give empirical
results for various problems then we test our approach on three counterexamples
for other measures of problem difficulty.

Hardness of standard test problems. In this subsection we estimate the
hardness of problems with no information (NIAH), random information or ran-
dom problems (RAND), maximally reliable information (unimodal functions)
and maximally unreliable information (deceptive functions). Furthermore, we
study problems with a variable level of difficulty: the NK landscapes with k =1–
10, multimodal landscapes (MM1, MM2, etc.) with a varying number of local
maxima (1–20), and trap functions (TRAPi where i ∈ {1, · · · , l} indicates the
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level of difficulty, TRAP1 being the most difficult). Finally, to test our measure
of difficulty on landscapes which were not induced by artificial problems, we
also considered 12 random MAXSAT problems (14 literals, 59 clauses). For each
problem, we consider only one global optimum. If a problem had more than one
global optimum, we chose one at random to be the target solution.

Table 1 gives our (predicted) measure of difficulty (h(V )) for selected problems
and the actual performance obtained by the GA (P ). Note that h(V ) is scaled
between 0 (very easy) and 1 (very hard) while the performance P between 1
(when, on average, the optimum was sampled in the first generation) and 100
(on average, the optimum was not sampled in 100 generations).

As one can observe, the scale of h(v) is neither linear nor always consistent.
For example, a difference of only 0.002 between MM5 (0.403) and NK2 (0.405)
corresponds to a very large difference in performance: 68.7 for MM5 vs. 33.9 for
NK2. Still, the correlation coefficient between observed and predicted difficulty
(for all problems) is 0.82.

The table confirms some of the previous results regarding GA hardness (see
section 1). For example, the table shows that multimodality is not a good indi-
cator of problem difficulty [11]. A landscape with 9 local maxima has the same
expected difficulty as a landscape with 16 local maxima, while a landscape with
5 local maxima is more difficult than a landscape with 16.

Table 1. Estimated hardness h(V ) and average performance P for a selection of 40
test problems

h(V ) P Problem h(V ) P Problem h(V ) P Problem h(V ) P Problem

0.000 11.4 MM1 0.363 77.3 MM3 0.405 71.4 MM12 0.493 87.9 RAND
0.226 40.1 MM2 0.372 52.8 MM6 0.422 90.5 NIAH 0.496 83.6 NK9
0.293 23.0 NK1 0.374 59.3 MAXSAT 0.427 52.9 NK4 0.497 88.0 NK6
0.306 27.5 MAXSAT 0.374 58.8 MM9 0.44 74.8 MM13 0.502 89.2 RAND
0.325 28.2 MAXSAT 0.384 60.4 MM16 0.452 70.1 MM7 0.507 90.7 MM14
0.325 48.7 MAXSAT 0.387 53.7 MAXSAT 0.463 79.5 MM17 0.509 89.0 NK7
0.334 56.9 MM4 0.393 55.7 MM11 0.463 65.5 ALTNBR 0.511 87.0 NK8
0.336 39.3 MAXSAT 0.394 51.1 MAXSAT 0.473 82.9 MM15 0.605 79.3 TRAP4
0.355 42.6 MAXSAT 0.403 68.7 MM5 0.473 76.01 NK3 0.756 99.0 TRAP3
0.361 51.4 MAXSAT 0.405 33.9 NK2 0.491 90.4 MM18 0.842 100 TRAP1

The table also confirms that the NK model is not appropriate for the study of
problem difficulty because problems with a k > 2 are already very difficult [11].
Indeed, our measure suggests that the difficulty of such landscapes is close to
random.

Different instances of the same problem might have different degrees of diffi-
culty in the black-box scenario [11]. Indeed, the predicted difficulty for different
instances of the MAXSAT problems varies from 0.306 (easy) to 0.394 (difficult)
– even though, all were chosen with the same variable to clause ratio.
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Hardness of known counterexamples for other difficulty measures. In
the previous section we presented evidence supporting the hypothesis that h(V ) is
a meaningful indicator of problem difficulty. In this section we test our framework
on three problems where other measures of difficulty have been shown to fail.

Naudts and Kallel [16] constructed a simple problem consisting of a deceptive
mixture of Onemax and Zeromax, where both the fitness distance correlation
(FDC) measure and the sitewise optimisation measure (a generalisation for the
FDC and epistasis suggested in the same paper) failed to correctly predict per-
formance. For this class of problems, the higher the mixture coefficient m, the
harder the problem, yet no hardness measures was able to predict this. We per-
formed experiments with this problem2, with the control parameter m varying
from 1 (easy) to 9 (hard). The correlation between the predicted difficulty and
the actual performance was 0.75. So, we were largely able to capture the differ-
ence in performance as the parameter m varied.

Jansen [11] showed that the fitness distance correlation of the ridge function
is very small. Yet, this is an easy problem for a hill climber. So, we decided to
apply our method to this function as well. The distance of the ridge function to
the optimal landscape is 0.84, which indicates a very difficult problem. Indeed,
the GA was not able to find the solution in 100 generations. A problem that is
easy for a hill climber is not necessarily easy for a recombinative GA.

Jansen [11] gave two counter examples to the bit-wise epistasis measure of
difficulty. The first one was the NIAH which we already discussed before. The
second was the leading-one function. The distance of the leading one function
from the optimum landscape is 0.36, which predicts well the performance shown
by a GA (50.3 average number of generations required to sample the global
optimum).

5 Conclusions

The decomposition of f into Pf captures the way in which the algorithm uses
the fitness function – i.e., via the selection paradigm – to define a probability
distribution over sampled points which is used to pick the solutions around which
to expand the search.

This decomposition enables one, to a large extent, to approximate the perfor-
mance of a GA using a simple, linear function. In section 4.1 we demonstrated
this empirically for problems of small size (3 bits). Also, a predictive measure
based on the linear approximation was used to assess the GA hardness (section
4.2) of several larger problems (14 bits).

Ties in classical graph search algorithms are known to lead to poor perfor-
mance. We assessed the influence of ties for RSHs using the expected entropy
of Pf . Interestingly, the linear approximation predicts that the number of ties
as measured in section 3.3 gives a bound to the expected performance. In the
extreme case where the entropy is maximal performance cannot be better than
that of random search.
2 The GA used in [16] is different from the one used here.



136 Y. Borenstein and R. Poli

While the framework presented in section 2 is general, the first order approx-
imation was tested only for GAs. We expect the same approximation to hold
for other population based, stochastic algorithms. However, this remains to be
checked.

The drawbacks of this framework is the lack of bounds to its precisions. The
approximation suggested in this paper and the conclusions which can be derived
from it can be used only as a first indication to the properties of particular
algorithms or functions. Nevertheless, the ever increasing number of new complex
metaheuristics makes a rough, but quick estimation a necessity.
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Abstract. The effects of neutrality on evolutionary search are not fully
understood. In this paper we make an effort to shed some light on how
and why bit-wise neutrality – an important form of neutrality induced
by a genotype-phenotype map where each phenotypic bit is obtained by
transforming a group of genotypic bits via an encoding function – influ-
ences the behaviour of a mutation-based GA on functions of unitation.
To do so we study how the fitness distance correlation (fdc) of landscapes
changes under the effect of different (neutral) encodings. We also study
how phenotypic mutation rates change as a function of the genotypic
mutation rate for different encodings. This allows us to formulate simple
explanations for why the behaviour of a GA changes so radically with
different types of neutrality and mutation rates. Finally, we corroborate
these conjectures with extensive empirical experimentation.

1 Introduction

Evolutionary Computation (EC) systems are inspired by the theory of natural
evolution. The theory argues that through the process of selection, organisms
become adapted to their environments and this is the result of accumulative
beneficial mutations. However, in the late 1960s, Kimura [22] put forward the
theory that the majority of evolutionary changes at molecular level are the result
of random fixation of selectively neutral mutations. In other words, the muta-
tions that take place in the evolutionary process are neither advantageous nor
disadvantageous to the survival of individuals. Kimura’s theory, called neutral
theory of molecular evolution, considers a mutation from one gene to another as
neutral if this modification does not affect the phenotype.

Within the context of EC, different approaches have been proposed to study
neutrality in evolutionary search. Whether or not neutrality helps evolutionary
search, however, has not conclusively been established. In the following section,
we will present work that shows clearly that the relationship between the geno-
type space and phenotype space when neutrality is present in the evolutionary
search plays a crucial role.
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The aims of our work are:

– understanding the relationship between the solution space (represented at
phenotype level) and the search space (represented at genotype level) in the
presence of neutrality, and, following this analysis,

– identifying under what circumstances neutrality may help to improve per-
formance of evolutionary processes.

The paper is organised as follows. In the next section, previous work on neu-
trality in EC is summarised. In Section 3, we describe the genotype-phenotype
encodings studied in this paper. In Section 4 we review the notion of the fitness
distance correlation (fdc), introduce our test problems and look at their fdc in
the absence of neutrality. In Section 5 we study the effects of bitwise neutrality
on the difficulty of our test problems, exploring the case of the OneMax problem
in particular depth. Section 6 makes the relation between genotypic mutation
rates and phenotypic mutation rates explicit. In Sections 7 and 8 we present
and discuss the results of experiments with unimodal, multimodal and deceptive
landscape problems and draw some conclusions.

2 Previous Work

In biology the effects of neutrality have been extensively discussed in numerous
studies (see for example [22,18,13]). As a consequence of these studies, there has
been a growing interest in using and analysing the effects of neutrality in EC.

For instance, Barnett [3] introduced a new family of NK fitness landscapes
that has the property of allowing the explicit addition of neutrality in the evo-
lutionary process. He called them NKp fitness landscapes. The parameter p is
determines the amount of neutrality that is be present during evolution (p = 0
corresponds to a normal NK landscape while p = 1 corresponds to a flat land-
scape). Barnetts’ motivation was to see if the constant innovation property ob-
served in biology [18] was present in this type of neutrality. The author argued
that, at least for a mutation-selection algorithm, avoiding to get stuck in local
optima can be achieved in the presence of neutral networks.

In a insightful investigation, Weicker and Weicker [36] used two methods to
analyse the effects of redundancy: diploid and decoders. For the former method,
each individual contains two solutions and an extra bit which is in charge to
set the active solution. So, it is clear that the size of the search space for this
kind of redundancy has increased dramatically. Moreover, this kind of mapping
is homogenous. This is not the case, however, for the decoder method. A decoder
is effectively a repair mechanism that maps an invalid genotype (e.g., one that
violates some constraints) into a valid one. They investigated the effects of both
methods with respect to local optima, finding that local optima in the search
space are converted to plateaus. However, this does not mean that this represent
an advantage, as the authors pointed out saying: “... redundancy has many facets
with various different characteristics. The mapping from those characteristics to
the expected performance remains to be done” [36].
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Toussaint and Igel [33] pointed out that standard approaches to self-
adaptation [10] are a basic and explicit example for the benefit of neutrality.
In these approaches the genome is augmented with strategy parameters which
typically parameterise the mutation distribution (e.g., the mutation rate). These
neutral parts of the genome are co-adapted during evolution to induce better
search distributions. Interestingly, theoretical work on the evolution of strategy
parameters [4] can so be re-interpreted as theoretical results on the evolution
of neutral traits. The point of view developed in [33] conversely suggests that
the core aspect of neutrality is that different genomes in a neutral set provide a
variety of different mutation distributions from which evolution may select in a
self-adaptive way.

This line of thought was further formalised by Toussaint [32]. Given a fixed
GP-map one can investigate the varieties of mutation distributions induced by
different genomes in a neutral set. If their phenotypic projections (the phenotypic
mutation distributions) are constant over each neutral set this is defined as triv-
ial neutrality. Toussaint shows that trivial neutrality is a necessary and sufficient
condition for compatibility with phenotypic projection of a mutation-selection
GA. Intuitively this means that, in the case of trivial neutrality, neutral traits
have no effect on phenotypic evolution. I.e., whether one or another representa-
tive of a neutral set is present in a population does not influence the evolution
of phenotypes. Note that one of the encodings we will investigate (the Parity en-
coding) is a case of trivial neutrality. This and calculations presented in Section 5
will help us explain the results presented in Section 7. In the case of non-trivial
neutrality, different genotypes in a neutral set induce different phenotypic dis-
tributions, which implies a selection between equivalent genotypes similarly to
the selection of strategy parameters in self-adaptive EAs. Toussaint interprets
this as the underlying mechanism of the evolution of genetic representations.

Vassilev and Miller [35] claimed that the presence of neutrality in evolutionary
search was useful when they used Cartesian Genetic Programming (CGP) [25]
to evolve digital circuits. For their study, the authors considered the well-known
three-bit multiplier problem. They focused their attention on the relation be-
tween the size and the height of the landscapes plateaus. In their work, Vassilev
and Miller suggested that the length of neutral walks will decrease as the best
fitness increases. They concluded that neutrality helps to cross wide landscapes
areas of low fitness.

Smith et al. [29] analysed the effects of the presence of neutral networks on
the evolutionary process. They observed how evolvability was affected by the
presence of such neutral networks. For their study they used a system with an
extremely complex genotype-to-fitness mapping. They concluded that the ex-
istence of neutral networks in the search space, which allows the evolutionary
process to escape from local optima, does not necessarily provide any advantage.
This is because the population does not evolve any faster due to inherent neu-
trality. In a different piece of work [30], the same authors focused their research
on looking at the dynamics of the population rather than looking at just the
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fitness, and argued that neutrality did not perform a useful role in an evolution-
ary robotic task.

Ebner et al. [9] studied the effects of neutrality on the search space. For this
purpose, they separate the search space into phenotypes which belong to different
species. In their work, they proposed three different types of encodings which,
according to the authors, seem to allow a high degree of connectivity among
neutral networks and so, individuals will not have problem discovering other
species. From their experiments, they concluded that the higher the degree of
redundancy (another term for neutrality) is, the better species are able to adapt.
In other words, redundancy avoids getting stuck in local optima.

Yu and Miller [37] showed in their work that neutrality improves the evolu-
tionary search process for a Boolean benchmark problem. They used Miller’s
CGP [25] to measure explicit neutrality in the evolutionary process. They ex-
plained that mutation on a genotype that has part of its genes active and others
inactive may produce different effects: mutation on active genes is adaptive be-
cause it exploits accumulated beneficial mutations, while mutation on inactive
genes has a neutral effect on a genotype’s fitness, yet it provides exploratory
power by maintaining genetic diversity. Yu and Miller extended this work in [38]
showing that neutrality was helpful and that there is a relationship between
neutral mutations and success rate in a Boolean function induction problem.
However, Collins [7] claimed that the conclusion that neutrality is beneficial in
this problem is flawed.

Yu and Miller also investigated neutrality using the simple OneMax prob-
lem [39]. They attempted a theoretical approach in this work. With their exper-
iments, they showed that neutrality is advantageous because it provides a buffer
to absorb destructive mutations.

Chow [5] studied the relationship between genotype space and phenotype
space. In his work, Chow used a hybrid algorithm (a GA receiving feedback from
a hill climber). The approach proposed by Chow relies on replacing a genotype
by converting a phenotype to its corresponding genotype. Such phenotype is
given to the GA by the hill climber. Chow claimed that in all experiments, such
replacements improved the search results.

Fonseca and Correia [12] developed a mathematical model which is able to
include the properties proposed by Rothlauf and Goldberg [28] and which are
claimed to influence the quality of redundant representations. All their experi-
ments were carried out in the context of a simple mutation-selection evolutionary
model. Under this model, the authors were wondering whether a redundant rep-
resentation might be constructed which preserves evolutionary behaviour. Based
on their mathematical model, they claimed that the presence of non-coding genes
do not affect the evolutionary process. However, they were unable to determine
what kind of representation (redundancy) is necessary to obtain good results on
a given optimisation problem.

Banzhaf and Leier [2] studied the effects of neutral networks’ connectivity
using a Boolean problem. They studied the effects of neutrality using 2 NAND
space and showed how it can aid the evolutionary search. For this purpose,
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Banzhaf and Leier used a linear GP representation because, they argued, with
GP it is easier to identify neutrality than in other evolutionary method. In
their experiments and by means of an exhaustive examination of all possible
genotypes, they showed how there are highly common phenotypes and very few
uncommon phenotypes. The authors concluded that neutral networks must be
highly intertwined to allow a quick transition from one network to the next.

In summary, the literature presents a mixed picture as to what the effects of
neutrality on evolutionary search are.

As can be seen from previous paragraphs, the relationship between phenotype
and genotype space is crucial to understand the influence of neutrality on evolu-
tionary search. We believe that the effects of neutrality on evolutionary search
are not well understood for several reasons:

– studies often consider problems, representations and search algorithms that
are relatively complex and so results represent the compositions of multiple
effects (e.g., bloat or spurious attractors in genetic programming),

– there is not a single definition of neutrality and different studies have added
neutrality to problems in radically different ways, and,

– the features of a problem’s landscape change when neutrality is artificially
added, but rarely an effort has been made to understand in exactly what
ways.

Recently [14,24], in an effort to shed some light on neutrality we started ad-
dressing these problems. In particular, we studied perhaps the simplest possible
form of neutrality: a neutral network of constant fitness, identically distributed
in the whole search space. For this form of neutrality, we analysed both problem-
solving performance and population flows from and to the neutral network and
the basins of attraction of the optima, as the fitness of the neutral network was
varied.

In this paper, we will continue towards the same goals, but we will consider
a much more practical form of neutrality, bit-wise neutrality.

3 Bitwise Neutrality

Bitwise neutrality is a form of neutrality induced by a genotype-phenotype map
where each phenotypic bit is obtained by transforming a group of genotypic bits
via some encoding function. In this paper we consider three different kinds of
genotype-phenotype encodings to specify bitwise neutrality in the evolutionary
process. For the three of them, each phenotypic bit is encoded using n genotypic
bits.

These encodings are defined as follows:

1. The majority encoding works as follows: given n bits, the user defines a
threshold (T ) (0 ≤ T ≤ n) and if the number of ones that are in the n
genotypic bits is greater or equal to T then the bit at the phenotype level is
set to 1, otherwise it is set to 0. Figure 1(a) illustrates this concept. Normally,
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to avoid biasing the system we will always use T = n/2 and n odd. This
guarantees that 0s and 1s are treated identically.

2. The parity encoding works as follows: if the number of ones that are in n
genotypic bits is an even number, then the bit at the phenotype level is set
to 1, otherwise it is set to 0. Figure 1(b) illustrates this concept.

3. The truth table encoding works as follows: a truth table is generated and the
output for each combination is produced at random. (Half of the outputs
of the truth table are assigned with 0s and the other half are assigned with
1s. Then the outputs are shuffled to make them perfectly random). Then we
consider the n genotypic bits as inputs, and we take as our phenotypic bit
the corresponding truth table’s output. Figure 1(c) illustrates this concept.

Neutrality is added to the non-redundant code by the proposed encodings.
Because each bit is encoded using n bits, the same phenotype can be obtained
from different genotypes and, so, neutrality is artificially added to the search
space.

In the presence of the form of neutrality discussed above, the size of the
search space is 2�n, where � is the length of a phenotypic bit string and n is
the number of bits required to encode each bit. With the types of encodings
explained earlier, we have increased not only the size of the search space but
also the size of the solution space. However, this does not mean that neutrality
is always beneficial. We have also to bear in mind that the mutation rate at
genotype level is different than the mutation rate at phenotype level. We will
calculate these mutations rates and see their effects in Section 6.

Neutrality is often reported to help in multimodal landscapes, in that it can
prevent a searcher from getting stuck in local optima. However, very little math-
ematical evidence to support this claim has been provided in the literature. So,
in the next section we start our analysis by using a well-defined hardness mea-
sure, the fitness distance correlation, calculating it in such a way to make the
dependency between problem difficulty and neutrality of the encoding explicit.

4 Fitness Distance Correlation

4.1 Definition

Jones [19,20] proposed fitness distance correlation (fdc) to measure the diffi-
culty of problem by studying the relationship between fitness and distance. The
idea behind fdc was to consider fitness functions as heuristics functions and to
interpret their results as indicators of the distance to the nearest global opti-
mum of the search space and, so, fdc is an algebraic measure to express such a
relationship.

The definition of fdc is quite simple: given a set F = {f1, f2, ..., fn} of fitness
values of n individuals and the corresponding set D = {d1, d2, ..., dn} of distances
to the nearest global optimum, we compute the correlation coefficient r, as:

r =
CFD

σF σD
,
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genotype

(a)

1 01 01 1 0 0 1 0

1 0

0 nxl

n bits

l bits

phenotype

T = 2.5
n = 5

genotype

(b)

1 01 01 1 0 0 1 0

0 1

0 nxl

n bits

l bits

phenotype

genotype

(c)

1 01 011 1 1 1 1

1 0

0 nxl

n bits

l bits

phenotype

X0 X1 X2 X3 X4 Out

1 01 01

1 1 1 1 1

0

1

Majority encoding

Parity encoding

Truth Table encoding

Fig. 1. Three different encodings used in our research: (a) Majority encoding, (b) Parity
encoding and (c) Truth table encoding
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where:

CFD =
1
n

n∑
i=1

(fi − f)(di − d)

is the covariance of F and D, and σF , σD, f and d are the standard deviations
and means of F and D, respectively. The n individuals used to compute fdc can
be chosen in different ways. For reasonably small search spaces or in theoretical
calculations it is often possible to sample the whole search space. In this case
fdc can be computed exactly. However, in most other cases, fdc is estimated by
constructing the sets F and D via some form of random sampling.

According to [20] a problem can be classified in one of three classes, depending
of the value of r: (1) misleading (r ≥ 0.15), in which fitness tends to increase with
the distance from the global optimum, (2) difficult (−0.15 < r < 0.15), for which
there is no correlation between fitness and distance, and (3) easy (r ≤ −0.15),
in which fitness increases as the global optimum approaches.

There are some known weakness in the fdc as a measure of problem hard-
ness [1,26,27]. However, it is fair to say that the method has been generally very
successful [6,20,31,34]. The distance used in the calculations is, for binary search
spaces, the Hamming distance, H .

In this work we will use fdc to evaluate problem difficulty with and without
neutrality. Here we only consider problems where the fitness function is a function
of unitation, so, we can rewrite CFD in a more explicit form.

4.2 Test Problems

We have used three problems to analyse neutrality. The first one is the OneMax
problem. The problem is to maximise:

f(x) =
∑

i

xi,

where x is a binary string of length �, i.e., x ∈ {0, 1}�. Naturally, this problem
has only one global optimum in 11 · · · 1, and, the landscape is unimodal. Seen as
a function of unitation the problem is represented by f(u) = u or f(x) = u(x)
where u(x) is a function that returns the unitation value of x.

For the second problem, we used a multimodal problem generator [8,21,23].
The idea is to create problem instances with a certain degree of multi-modality.
In general, for a problem with P peaks, P bit strings of length � are randomly
generated. The generator works as follows. To evaluate an arbitrary individual
x, we first locate the nearest peak in Hamming space

Peakn(x) = arg min
i

H(Peaki, x)

In case there is a tie, the highest peak is chosen. The fitness of x is the number
of bits the string has in common with that nearest peak, divided by � and scaled
by the height of the nearest peak:

f(x) =
�−H(x, Peakn(x))

�
×Height(Peakn(x))
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In this problem, the fitness value has a range from 0.0 and 1.0. The goal is
to find the highest peak (i.e., to find a string with fitness 1.0). The difficulty
of the problem depends on the number of peaks, the distribution of peaks and,
finally, the distribution of peak heights. To carry out our experiments, we have
tuned the parameters in such a way to make the problem much harder than the
OneMax problem but easier than the trap function (see below). More details
will be provided in Section 7.

The third and last problem is a Trap function, which is a deceptive function
of unitation [15,16,17]. For this example, we have used the function:

f(x) =

{
a

umin
(umin − u(x)) if u(x) ≤ umin,

b
�−umin

(u(x)− umin) otherwise

where a is the deceptive optimum, b is the global optimum, and umin is the
slope-change location. Basically the idea is that there are two optima, a and b,
and by varying the parameters � and umin, we can make the problem easier or
harder.

4.3 fdc in the Absence of Neutrality

For all our test problems, given a search space of binary strings of length � and
being the unitation of the optimal string uopt = �, if we sample the whole search
space in order to compute CFD, we have:

CFD =
1
2�

�∑
u=0

(
�

u

)
(f(u)− f)(�− u− d)

where:

f =
1
2�

�∑
u=0

(
�

u

)
f(u)

and

d = �− 1
2�

�∑
u=0

(
�

u

)
u =

�

2
.

Similar expressions can be obtained for σD and σF .
So, for example, for OneMax, where f(u) = u, we have f̄ = �

2 and

CFD =
1
2�

�∑
u=0

(
�

u

)(
u− �

2

)(
�

2
− u

)
= − �

4

as one can easily see by noting that 1
2�

(
�
u

)
is a binomial distribution,(

�
u

)
pu(1 − p)�−u, with success probability p = 1/2. Therefore, by definition of

variance, CFD = −V ar[u] = −�p(1− p) = − �
4 . By similar arguments one finds

σ2
D = σ2

F = 1
4 , whereby r = −1, suggesting an easy problem. For Trap functions,

instead, whenever umin ≈ � one finds r ≈ 1 [19] indicating hard problems.
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5 fdc in the Presence of Bitwise Neutrality

As mentioned in Section 3, the form of neutrality we consider here is one where
each phenotypic bit is encoded using n genotypic bits. In this situation, CFD is
given by:

CFD =
1

2n�

∑
x∈{0,1}n�

(fx(x)− f̄)(d(x) − d̄)

where x = x1 · · ·xn� is a genotype and fx(x) is the genotypic fitness. Sim-
ilar expressions can be obtained for σD and σF . Note that fx(x) can be
written as

fx(x) = fy(g(x(1)), g(x(2)), · · · , g(x(n)))

where x(k) = x(k−1)n+1 · · ·xkn is a substring of x, g is one of our encod-
ing functions (e.g., Majority or Parity), and fy(y) is the phenotypic fitness
(y ∈ {0, 1}�), which in this work we will assume to be a function of
unitation.

We define Xn = {x ∈ {0, 1}n : g(x) = 1} and X̄n = {x ∈ {0, 1}n : g(x) = 0}.
We require that our encoding functions g respect one property: that on average
they return as many 0s as 1s, i.e.,∑

x∈{0,1}n

g(x) = 2n−1.

This property is respected by the encodings described in Section 3. So, |Xn| =
|X̄n| = 2n−1.

To illustrate the effects of the introduction of bitwise neutrality, in the follow-
ing we will consider in detail the case of OneMax.

5.1 fdc for OneMax with Bitwise Neutrality

For the OneMax function we have

fx(x) =
∑

i

g(x(i)).

To compute fdc we can make use of a result originally derived by Jones [19,
Appendix D]: the concatenation of multiple copies of a problem does not change
the fdc of the original problem, provided the fitness of the concatenated problem
is obtained by summing the fitnesses of the sub-problems. This result is appli-
cable because we can interpret g as the fitness functions of an n-bit problem
which is concatenated � times to form an �×n bit problem with fitness function
fx(x). Therefore, we can compute the fdc for OneMax with different forms of
bitwise neutrality by simply computing the fdc of the corresponding g functions.
Since these functions take only binary values, this calculation is simpler than
the original.
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Let us start by considering the mean value of the function g, ḡ, for all encod-
ings. By definition we have that g(x) = 1 for x ∈ Xn and g(x) = 0 otherwise.
So, irrespective of the encoding used we have

ḡ =
1
2n

∑
x∈{0,1}n

g(x) =
1
2n

∑
x∈Xn

1 =
1
2n
|Xn| =

1
2

irrespective of the encoding function used.
We use this result in the computation of σ2

F , obtaining

σ2
F =

1
2n

∑
x∈{0,1}n

(g(x) − ḡ)2

=
1
2n

⎛⎝ ∑
x∈Xn

(
1− 1

2

)2

+
∑

x∈X̄n

(
0− 1

2

)2
⎞⎠

=
1
4
,

which, again, is valid for all encodings.
Also, we have

d̄ =
1
2n

∑
x∈{0,1}n

H(x, N(x))

where N(x) is the global optimum nearest to x and H is the Hamming distance.
Because all elements of Xn are global optima of g, and, so, x = N(x) and
H(x, N(x)) = 0 for x ∈ Xn, we have

d̄ =
1
2n

∑
x∈X̄n

H(x, N(x)). (1)

If we extend the definition of Hamming distance to sets by via the definition
H(x, S) = miny∈S H(x, y), we can rewrite Equation (1) as

d̄ =
1
2
E[H(x, Xn)|x ∈ X̄n], (2)

where E[H(x, Xn)|x ∈ X̄n] is the mean Hamming distance between the elements
of X̄n and the set Xn.

Similarly we have,

σ2
D =

1
2n

∑
x∈{0,1}n

(H(x, N(x)) − d̄ )2

=
1
2n

⎛⎝∑
x∈Xn

(
0− d̄

)2 +
∑

x∈X̄n

(
H(x, N(x)) − d̄

)2⎞⎠
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=
1
2

(
d̄ 2 + E

[ (
H(x, Xn)− d̄

)2 ∣∣∣x ∈ X̄n

])
=

1
2

(
d̄ 2 + E

[
H(x, Xn)2

∣∣∣x ∈ X̄n

]
− 2d̄E

[
H(x, Xn)

∣∣∣x ∈ X̄n

]
+ d̄ 2

)
=

1
2

(
d̄ 2 + E

[
H(x, Xn)2

∣∣∣x ∈ X̄n

]
− 2d̄× (2d̄ ) + d̄ 2

)
=

1
2

(
E
[
H(x, Xn)2

∣∣∣x ∈ X̄n

]
− 2d̄ 2

)

Finally, we have

CFD =
1
2n

∑
x∈{0,1}n

(g(x)− ḡ )(H(x, N(x)) − d̄ )

=
1
2n

⎛⎝∑
x∈Xn

(
1− 1

2

)(
0− d̄

)
+
∑

x∈X̄n

(
0− 1

2

)
(H(x, N(x)) − d̄ )

⎞⎠
=
(
−1

2

)⎛⎝1
2
d̄ +

1
2n

∑
x∈X̄n

H(x, N(x)) − 1
2n

∑
x∈X̄n

d̄

⎞⎠
=
(
−1

2

)⎛⎝ 1
2n

∑
x∈X̄n

H(x, N(x))

⎞⎠
=
(
−1

2

)(
1
2
E[H(x, N(x))|x ∈ X̄n]

)
= − d̄

2

In the following subsections we apply these generic results to our three en-
coding functions: Parity, Truth Table and Majority.

5.2 fdc Under Parity

Let us start with the Parity encoding. The bit strings in X̄n have all odd parity.
Therefore, they can be turned into even-parity global optima by a single bit flip.
That is, their Hamming distance from a global optimum is always 1, whereby
E[H(x, Xn)|x ∈ X̄n] = 1. So, from Equation (2) we obtain

d̄ =
1
2
.

From this, it follows that

CFD = −1
4
.
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We also have that E
[
H(x, Xn)2

∣∣∣x ∈ X̄n

]
= 1. So,

σ2
D =

1
2

(
1− 2× 1

4

)
=

1
4
.

Therefore, the fitness distance correlation for OneMax under the Parity en-
coding is

r =
− 1

4√
1
4

√
1
4

= −1

That is, the fdc of OneMax is unaffected by the presence of bitwise neutrality
under Parity encoding, irrespective of the number of bits (n) one uses.

5.3 fdc Under Truth Table

Let us now consider the Truth Table encoding. In order to apply Equation (2)
we need to compute E[H(x, Xn)|x ∈ X̄n]. To do this we will treat H(x, Xn) as a
stochastic variable, compute its probability distribution and then make use of the
definition of expected value. Let us call p(d) the probability that H(x, Xn) = d
for a randomly chosen x ∈ X̄n.

Let us choose uniformly at random an x ∈ X̄n and then choose randomly one
of the Hamming-1 neighbours, x′, of x. Because the entries of the truth table
are randomly assigned, the probability that x′ ∈ Xn is 1

2 . Note that p(1) is the
probability that at least one neighbour of x is a member of Xn. Since x has n
neighbours and each neighbour’s membership of Xn is a Bernoulli trial, we have
that

p(1) = 1−
(

1
2

)n

.

So, as n grows, p(1) rapidly approaches 1.
Let us now focus on p(2). This can be seen as the probability of a joint

event, i.e., none of the Hamming-1 neighbours of a randomly chosen x ∈ X̄n is a
member of Xn, but at least one of its Hamming-2 neighbours is. We treat these
two events as independent.1 We know that the probability of the first event is
just 1−p(1) =

(
1
2

)n and we compute the probability of the second as one minus
the probability that none of the Hamming-2 neighbours of x is in Xn. Since
there are

(
n
2

)
such neighbours and the probability of each being in Xn is 1

2 , the

probability that none of the Hamming-2 neighbours of x is in Xn is 1−
(

1
2

)(n
2).

Putting everything together we then get

p(2) =
(

1
2

)n
(

1−
(

1
2

)(n
2)
)

1 This is an approximation, but its accuracy rapidly improves with n. So, our calcu-
lations are already very accurate for n ≥ 3.
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Similarly, we get

p(3) =
(

1
2

)n+(n
2)
(

1−
(

1
2

)(n
3)
)

and, more generally,

p(d) =
(

1
2

)∑d−1
k=1 (n

k)
(

1−
(

1
2

)(n
d)
)

.

We are now in a position to compute

E[H(x, Xn)|x ∈ X̄n] =
n∑

d=1

d · p(d). (3)

Note that p(d) is a very rapidly decreasing function. For example, for n = 4
we have p(1) = 0.93750, p(2) = 0.061523, p(3) = 0.00091553 and p(4) =
0.000030518. Furthermore, as n increases more and more of the probability mass
accumulates onto p(1), effectively leading to only p(1) and p(2) having any rel-
evance in the calculation in Equation (3). So, we can write

E[H(x, Xn)|x ∈ X̄n] ≈ p(1) + 2p(2) = 1 +
(

1
2

)n

− 2
(

1
2

)n+(n
2)

,

which makes it clear that for the Truth Table encoding E[H(x, Xn)|x ∈ X̄n] ≈
1 + 2−n. For example, for n = 3, 4, 5, 6, and computing E[H(x, Xn)|x ∈ X̄n]
using Equation (3) we obtain the values 1.11719, 1.06342, 1.03128, 1.01563,
respectively. So, under the Truth Table encoding

d̄ ≈ 1
2

+ 2−n−1

From this, it follows that

CFD = −1
4
− 2−n−2.

Using a similar approach we compute

E
[
H(x, Xn)2

∣∣∣x ∈ X̄n

]
=

n∑
d=1

d2 · p(d)

≈ p(1) + 4p(2)

= 1 + 3
(

1
2

)n

− 4
(

1
2

)n+(n
2)

≈ 1 + 3× 2−n
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So,

σ2
D ≈

1
2

(
1 + 3× 2−n − 2×

(
1
2

+ 2−n−1

)2
)

≈ 1
2

(
1 + 3× 2−n − 1

2
− 2−n

)
≈ 1

2

(
1
2

+ 2× 2−n

)
=

1
4

+ 2−n

Therefore, the fitness distance correlation for OneMax under the Truth Table
encoding is

r = −
1
4 + 2−n−2√
1
4 + 2−n

√
1
4

= −
2(−n−1) + 1

2√
2−n + 1

4

≈ −1 + 2−n.

That is, for n ≥ 5 or so, also Truth Table induces a form of neutrality which
effectively leaves the fdc/problem difficulty unchanged. For relatively small val-
ues of n, however, this encoding makes the OneMax problem harder, albeit to
a small degree. In Section 6 and 7 we will use n ≥ 5, for which Truth Table
effectively behaves like Parity.

5.4 fdc Under Majority

Let us now consider the Majority encoding. Again, we start by computing
E[H(x, Xn)|x ∈ X̄n].

With a Majority encoding with T = n/2 and n odd, X̄n is the class of all
strings of length n which have 0, 1, ... &T ' bits set to 1. That is, we can naturally
describe X̄n by saying that it is contains all strings with unitation value u < T .
Given a string in X̄n having unitation u, we can compute how close this is to
Xn just by looking at how many additional 1’s would be needed to transform
the string into a member of Xn. This number is simply (T − u). Since for each
unitation class u we have

(
n
u

)
strings, we can then write

E[H(x, Xn)|x ∈ X̄n] =
1

2n−1

∑
x∈X̄n

H(x, Xn) =
1

2n−1

∑
u<T

(
n

u

)
× (T − u).

This can be computed numerically. For T = n/2, n odd, and small values of n,
E[H(x, Xn)|x ∈ X̄n] grows approximately as 0.63 + 0.37

√
n. So, we have

d̄ ≈ 0.315 + 0.185
√

n

and
CFD ≈ −0.1575− 0.0925

√
n.
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Using a similar approach we compute

E
[
H(x, Xn)2

∣∣∣x ∈ X̄n

]
=

1
2n−1

∑
x∈X̄n

H(x, Xn)2

=
1

2n−1

∑
u<T

(
n

u

)
× (T − u)2

≈ 0.725 + 0.334× n

for small values of n. So,

σ2
D ≈

1
2

(
0.725 + 0.334× n− 2

(
0.315 + 0.185

√
n
)2)

≈ 0.133 n− 0.117
√

n + 0.263

Therefore, the fitness distance correlation for OneMax under the Majority
encoding is

r ≈ − 0.315 + 0.185
√

n√
0.133 n− 0.117

√
n + 0.263

.

So, in this case there is a much more marked effect of the encoding on the diffi-
culty of a problem with the fdc progressively increasing (from the original value
of −1) when n increases. For example, for n = 3, 5, 7, 9, 11 we obtain fdc values
of approximately -0.9376, -0.8926, -0.8554, -0.8261 and -0.8028, respectively.

Naturally, theoretical fdc calculations could be performed also for the Mul-
timodal problem generator and the Trap function in the presence of bitwise
neutrality, although for these functions one could not use Jones’ result [19, Ap-
pendix D]. We do not report these calculations. However, based on our results
with OneMax and the results in [32], it is easy to understand that the Parity
and Truth Table encodings have no or limited influence on the difficulty of the
Trap and Multimodal functions. However, we should expect Majority to make
these problems easier.

6 Phenotypic Mutation Rates

The analysis based on fdc indicates that the choice of encoding function used
to introduce neutrality may be critical in determining whether a problem is
made easier or harder by the introduction of neutrality in evolutionary search.
However, fitness landscapes and fdc effectively neglect to model the fact that the
precise distribution of mutants may have an important effect of search behaviour
and performance. For example, fdc remains the same irrespective of the mutation
probability pmut.

So, to better evaluate benefits and drawbacks of neutrality we want to under-
stand what effects different types of neutral encodings have on the way the search
proceeds under mutation. In particular we are interested in understanding how
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genotypic mutations are related to phenotypic mutations, since only phenotypic
changes can lead to fitness changes. To do so, we use the notion of phenotypic
mutation rate.

When the parity encoding is used, the phenotypic mutation rate corresponding
to a genotypic mutation rate pmut is given by:

pmutphenotypic =
∑

i=1,3,5,...

(
n

i

)
pi

mut(1− pmut)n−i

This is because only an odd number of genotypic bit-flips can produce a pheno-
typic change.

When the Truth Table encoding is used, the mutation rate at phenotype level
is given by:

pmutphenotypic =
1− (1− pmut)n

2
This is because there is the potential for a change in phenotypic value whenever
we change the row from which we read out the output in the truth table. This
happens if at least one genotypic mutation takes place (hence the factor 1 −
(1 − pmut)n). However, not all row changes lead to a flipped phenotypic bit.
Because the table is random, this happens only in 50% of the cases (hence the
denominator, 2).

The calculation of the phenotypic mutation rates for Majority are more dif-
ficult. We can, however, obtain numerical estimates for these very easily. We
do this by generating genotypic mutants of individuals using a particular geno-
typic mutation rate and recording how frequently the mutants are in a different
majority class than the original parents.

In Table 1, we show the phenotypic mutation rates when mutation rates at
genotype level are 0.01, 0.06 and 0.1 for Parity, Truth Table and Majority. In
the case of Majority figures are estimates obtained by generating 10,000 mutants
starting from a uniform random population. As we can see, there are conditions
in which different encodings produce similar phenotypic mutation rates. This
is the case, for instance, for the pairs of numbers in boldface, underlined, in
italics and in sans serif. Note that the Parity and Truth Table (for the values
of n used in the table) leave the fitness distance correlation of a problem un-
changed, as discussed in the previous section. So, whenever also the phenotypic
mutation rates match, we should expect to see similar performance under these
two encodings. We will verify this in the next section.

7 Results and Analysis

For OneMax and the other two problems we have used chromosomes of length
� = 14. For the multimodal landscape we have used P = 400 peaks. These were
distributed in such a way to give the problem deceptive features. Specifically,
the highest peak is at position 111 · · ·111 and the second highest peak is at
position 000 · · ·000, the remaining peaks are randomly distributed. This last
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Table 1. Phenotypic mutation rates when mutation rates at genotype level are 0.01,
0.06 and 0.1

Type of Pmut = 0.01 Pmut = 0.06 Pmut = 0.1
redundancy

Parity (n bits = 5) 0.0480 0.2361 0.3362
Parity (n bits = 6) 0.0571 0.2678 0.3689
Parity (n bits = 7) 0.0659 0.2957 0.3951
Parity (n bits = 8) 0.0746 0.3202 0.4161

Truth Table (n bits = 5) 0.0245 0.1331 0.2048
Truth Table (n bits = 6) 0.0293 0.1551 0.2343
Truth Table (n bits = 7) 0.0340 0.1758 0.2609
Truth Table (n bits = 8) 0.0386 0.1952 0.2848
Majority (n = 5, T = 2.5) 0.0168 0.0916 0.1530
Majority (n = 7, T = 3.5) 0.0204 0.1072 0.1725

Table 2. Parameters

Parameter Value

Length of the genome 14

Population Size 80

Generations 100

Mutation Rate (per bit) 0.01, 0.06, 0.1

Number of n bits encoded 5, 6, 7, 8

Independent Runs 1,000

feature makes the problem easier than the trap function. For the trap function
we used the following parameters: umin = 13, a = 39, b = 40. Figure 2 depicts
this trap function. For the three problems we have used a sample size 4,000 to
calculate fdc.

The experiments were conducted using a GA with fitness proportionate se-
lection and bit-flip mutation. Runs were stopped when the maximum number of
generations was reached. The parameters used are given in Table 2.

Let’s start by analysing fdc for the problems used in our experiments. Table 3
reports fdc for a representation without neutrality and for various forms of neu-
tral encoding. As predicted in Section 4, for the three problems, the Parity and
Truth Table encodings leave the fdc unchanged w.r.t. whatever value it had in
the absence of neutrality.2 On the contrary, as predicted, Majority moves slightly
the fdc of a problem towards zero, thereby making easy problems harder and
hard problems easier. The question now is: will actual search performance be
similarly affected?

2 This is not unexpected, since, as discussed in Section 2, the Parity encoding is a case
of trivial neutrality (where the evolution of phenotypic bit strings can be modelled
without referring to the corresponding genotypes). Also, the Truth Table encoding
effectively becomes a case of trivial neutrality for sufficiently large n.
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Fig. 2. The trap function used in our experiments (umin = 13, a = 39, b = 40)

In Table 4, we show the average number of generations required to reach the
optimum of OneMax and the percentage of successes in finding the optimum
measured in 1,000 independent runs of a GA. Let us analyse these results.

When pmut = 0.01 we can see a good match between the predictions of fdc
and problem difficulty. In particular, the Parity and Truth Table encodings show
almost exactly the same performance both in terms of percentage of runs where
the problem was solved and average number of generations required to solve it.
Also, we can see that, as predicted by our fdc analysis, the problem is easy and
remains easy under all encodings, being solved in almost 100% of cases in all
configurations. In addition, we can see that under Majority more generations are
required to solve the problem than under Parity and Truth Table, which again
confirms the predictions of the fdc analysis. There is, however, one element that
is unexpected. In the absence of neutrality, runs take longer to find the optimum
than with Parity and Truth Table. In fact, they take approximately as long as
for Majority.

When pmut = 0.06 the situation becomes less clear. Here Parity and Truth
Table do not perform identically any more, with Truth Table still being able
to solve the problem in almost all runs, while Parity does so only in between
70 and 90% of the cases. This was not predicted by the fdc analysis. What is
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Table 3. Fitness Distance Correlation estimated for the OneMax problem, the Multi-
modal Problem generator and the Trap function

Type of OneMax Multimodal Trap
redundancy Problem Problem Function

No neutrality -1 0.5114 0.9979
Parity (n = 5) -1 0.5190 0.9925
Parity (n = 6) -1 0.5190 0.9999
Parity (n = 7) -1 0.5144 0.9999
Parity (n = 8) -1 0.5086 0.9999

Truth Table (n = 5) -0.9999 0.5102 0.9999
Truth Table (n = 6) -1 0.5374 0.9925
Truth Table (n = 7) -1 0.5264 0.9999
Truth Table (n = 8) -0.9999 0.5233 0.9925

Majority (n = 5, T = 2.5) -0.8488 0.4444 0.8434
Majority (n = 7, T = 3.5) -0.8308 0.4471 0.8308

particularly surprising here is that in all cases Parity and Truth Table take longer
to solve the problem than Majority and the no-neutrality case. So, Parity and
Truth Table effectively make the problem harder, while the other two encodings
are still performing approximately the same and their performance seems to be
unaffected by the increase in mutation rate. fdc analysis also did not predict
that performance would vary with n when using the Parity encoding.

These rather confusing trends continue also at the highest genotypic muta-
tion rate, pmut = 0.1. Now also the performance with Truth Table varies with
n. Furthermore, in the no-neutrality case the problem is now solved in fewer
generations than with the Majority encoding.

In summary, it is clear that while fdc captures some of the characteristics of
a problem in relation to its difficulty for a GA, it does not capture all.

To explain these results one really needs to look at our second descriptor: the
phenotypic mutation rates. As one can see in Table 1, when pmut = 0.01 the
encodings considered induce phenotypic mutation rates in the range 1.5-7.5%.
At these mutation rates the GA solves the problem almost equally easily as it
does without neutrality.

The more the phenotypic mutation rate is increased, the more the search
will be expected to become undirected and random, leading to a worsening of
performance. Indeed, when the genotypic mutation rate is increased to 0.06, the
Truth Table encoding provides a phenotypic mutation rate which is significantly
smaller than for Parity (see Table 1, second column). As expected, in these
conditions the performance with Parity is worse than with Truth Table (see
Table 4). The phenotypic mutation rates for Majority are even smaller than for
Truth Table. So, it is not surprising to see that the GA performs better with
Majority than with all other encodings.

When pmut = 0.1, the phenotypic mutation rates for all encodings are fur-
ther increased, leading to an even more undirected search. Note how, in these
conditions, the phenotypic mutation rates for Truth Table are similar to those
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Table 4. Performance of a mutation-based GA on the OneMax problem. Pairs of
numbers in boldface, underline, italics or sans serif represent situations with almost
identical phenotypic mutation rates.

pmut = 0.01 pmut = 0.06 pmut = 0.1
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 21.35 100% 14.39 100% 16.58 100%
Parity (n = 5) 14.55 100% 36.06 90.1% 44.02 62.7%
Parity (n = 6) 14.46 100% 38.38 82.6% 45.14 54.4%
Parity (n = 7) 14.49 100% 40.09 73.3% 42.12 49.7%
Parity (n = 8) 15.06 100% 43.26 68.2% 44.56 47.6%

Truth Table (n = 5) 16.63 99.9% 20.02 99.5% 29.21 95.0%
Truth Table (n = 6) 16.89 100% 22.87 99.4% 33.14 90.5%
Truth Table (n = 7) 15.89 100% 24.41 97.5% 35.49 84.5%
Truth Table (n = 8) 15.01 100% 28.16 97.4% 38.89 78.8%

Majority (n = 5, T = 2.5) 23.39 99.8% 17.26 99.7% 22.08 99.3%
Majority (n = 7, T = 3.5) 23.51 99.8% 17.93 100% 22.50 98.6%

observer at pmut = 0.06 for Parity, and how performance is similar for these
two cases (see Table 4). Similar phenotypic mutation rates and similar perfor-
mance can also be observed for Majority (at pmut = 0.1) and Truth Table (at
pmut = 0.06). At a mutation rate of 0.1, Parity presents high phenotypic muta-
tion rates, reaching 41.6% in the case n = 8. In these conditions the search is
almost random and so performance is poor.

Increasing further the genotypic mutation rate will lead the Parity and Truth
Table encodings near a phenotypic mutation rate of 50%. There the search is ef-
fectively a random search. We do 8,000 trials (80 individuals for 100 generations)
in each run, which represent 48.82% of the search space size, 2�, since � = 14.
However, because of resampling we should only expect to find the optimum with
probability 38.3%. (This can be computed using the theory for the coupon col-
lector problem, see [11].) This is the limit performance for high mutation rates.

Let us now consider our second problem: the multimodal problem. For this
problem, we tuned the parameters in such a way to make the problem hard,
but still easier than the trap problem. Again, at the lowest mutation rate, the
predictions of fdc are roughly correct: the problem is hard (fdc > 0) and remains
hard irrespective of the encoding used and Parity and Truth Table lead to the
same level of difficulty. Again, however, at the higher mutation rates the situa-
tion becomes rather more confusing, with Parity showing improved performance
over the other encodings and a dependency of performance on n. Effectively, we
can observe the opposite effects as in the OneMax problem. However, the con-
fusion again disappears if we look at the mutation rates corresponding to each
encoding.

Finally, let us consider the Trap problem. For this problem, the bigger the
value of the slope-change location umin, the harder the problem. In our exper-
iments we chose � = 14 and umin = 13 and, so, the problem is very hard.
The behaviour of the evolutionary search in this problem is a mirror image of
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Table 5. Performance of a GA on the Multimodal function. Pairs of numbers in bold-
face, underline, italics or sans serif represent situations with almost identical phenotypic
mutation rates.

pmut = 0.01 pmut = 0.06 pmut = 0.1
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 8.56 3.2% 5.22 2.7% 11.54 1.9%
Parity (n = 5) 5.61 3.4% 41.2 5.8% 44.07 14.2%
Parity (n = 6) 4.76 3.4% 45.27 7.2% 50.41 19.4%
Parity (n = 7) 2.80 2.1% 44.41 9.9% 46.31 24.6%
Parity (n = 8) 4.85 2.1% 42.14 12.7% 46.94 23.2%

Truth Table (n = 5) 6.41 3.6% 15.86 2.5% 34.11 3.5%
Truth Table (n = 6) 8.18 2.5% 20.27 2.2% 34.32 4.8%
Truth Table (n = 7) 6.59 2.6% 24.07 3.1% 44.44 5.6%
Truth Table (n = 8) 4.95 3.6% 19.10 3.2% 33.03 7.9%

Majority (n = 5, T = 2.5) 11.41 2.0% 23.6 1.4% 15.62 1.9%
Majority (n = 7, T = 3.5) 9.76 2.3% 9.44 2.2% 25.42 2.4%

that observed on the OneMax problem (see Table 6). Again, we can see how
fdc makes reasonably good predictions of relative difficulty under different en-
codings when pmut = 0.01, but that the picture becomes less and less clear
as pmut increases. However, again, we can explain performance differences eas-
ily by looking at phenotypic mutation rates. In this case, because the prob-
lem is deceptive, the more random the search is, the more likely the global
optimum is found. So, performance improves as the phenotypic mutation rate
increases.

Table 6. Performance of a GA on the Trap function. Pairs of numbers in boldface,
underline, italics or sans serif represent situations with almost identical phenotypic muta-
tion rates.

pmut = 0.01 pmut = 0.06 pmut = 0.1
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 0.6 0.3% 7.2 0.7% 4.55 0.7%
Parity (n = 5) 1 0.5% 47.77 10.4% 44.85 22.0%
Parity (n = 6) 1 0.8% 45.96 15.6% 44.73 23.8%
Parity (n = 7) 1 0.6% 48.62 15.4% 46.82 32.0%
Parity (n = 8) 13.57 0.7% 46.27 20.2% 46.69 31.5%

Truth Table (n = 5) 1 0.7% 13.05 1.4% 41.49 6.3%
Truth Table (n = 6) 1.25 0.6% 35.16 2.1% 47.19 7.8%
Truth Table (n = 7) 1 0.1% 32.36 3.5% 47.32 10.9%
Truth Table (n = 8) 1 0.9% 34.44 4.8% 58.54 13.0%

Majority (n = 5, T = 2.5) 1 1.1% 4.4 1.2% 19.91 2.3%
Majority (n = 7, T = 3.5) 1 0.5% 1.16 0.6% 28.15 1.9%
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Fig. 3. Success probability vs. phenotypic mutation rates for the OneMax, Multimodal
and Trap fitness functions. The points are obtained by combining the entries in Table 1
with those in Tables 4, 5 and 6.

The importance of considering the phenotypic mutation rates instead of the
classical genotypic mutation rates is shown in Figures 3 and 4. These figures
simply plot the success probabilities reported in Tables 4, 5 and 6 against the
corresponding genotypic and phenotypic mutation rates, totally ignoring dis-
tinctions between encodings. It is clear how the data strongly correlate with
the phenotypic mutation rates, while they correlate much more weakly with the
genotypic mutation rates. Note, for example, how the fairly ordinary genotypic
mutation rate of 0.1 leads the GA to perform very close to the random search
limit (38.3%). We believe this is one of the reasons why so much confusion is
present in the EC literature on neutrality.

From these results, it is apparent that fdc roughly provides an indication of
difficulty, but also that in order to obtain more accurate information one needs
to consider how the chosen representation translates genotypic mutation rates
into phenotypic mutation rates. With this information in hand, one should then
expect to see that for problems with negative fdc, performance degrades as the
phenotypic mutation rate increases, while the opposite happens for problems
with positive fdc.
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and Trap fitness functions. The points are obtained from Tables 4, 5 and 6.

8 Conclusions

In the literature there is contradicting evidence as to whether or not neutrality
aids evolutionary search. We believe that, with notable exceptions (e.g., [32]),
the confusion often derives from the fact that different researchers use radically
different types of neutral encodings and neglect to consider the effect of im-
portant parameters such as the rate of application of genetic operators. As we
have shown in this paper, small changes in the representation used and search
parameters can turn a neutral encoding from being beneficial to being strongly
disadvantageous and vice versa.

In this paper we considered a form of neutrality induced by a genotype-
phenotype map where each phenotypic bit is obtained by transforming a group
of genotypic bits via an encoding function. By using explicit calculations for fit-
ness distance correlation, we showed under what conditions a neutral encoding
has the potential to induce big changes in problem hardness. We also studied
how phenotypic mutation rates change as a function of the genotypic mutation
rate for different encodings. We then performed extensive empirical experimen-
tation. We showed that the performance of a GA can change radically with
different types of neutrality and mutation rates. However, phenotypic muta-
tion rates and fdc allowed us to formulate simple explanations for why this
happens.
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Abstract. We propose a method to build discrete Markov chain models
of continuous stochastic optimisers that can approximate them on arbi-
trary continuous problems to any precision. We discretise the objective
function using a finite element method grid which produces correspond-
ing distinct states in the search algorithm. Iterating the transition matrix
gives precise information about the behaviour of the optimiser at each
generation, including the probability of it finding the global optima or
being deceived. The approach is tested on a (1+1)-ES, a bare bones PSO
and a real-valued GA. The predictions are remarkably accurate.

1 Introduction

Markov chains are important in the theoretical analysis of evolutionary algorithms
operating on discrete search spaces. So far they have been of little use for EAs
searching on continuous spaces. Naturally, Markov chains with continuous state
spaces can be defined and powerful general results have been obtained using them
[14]. However, the complexity of the calculations involved makes them less than
ideal for the detailed theoretical analysis of continuous optimisers. Instead a va-
riety of different tools have been used. Despite these, generally making theoret-
ical progress in the continuous domain is extremely difficult. As a result, while
there are a few continuous domain optimisers, such as evolutionary strategies [2],
for which we have a reasonably clear mathematical understanding, in most other
cases, the reasons why an algorithm works (or does not) are totally unclear. For
example, how differential evolution [16] works is considered by most to be a mys-
tery. In other cases, detailed models of only some components of an algorithm are
available, as in the case of genetic algorithms applied to continuous functions [12].

Even where substantial theoretical progress has been made, this has virtually
always required either working at a highly abstract level or considering in detail
very special cases. For example, in evolutionary strategies, most theory has been
restricted to the class of sphere functions. While in the case of particle swarm
optimisers, the theory available (see for example [13,5,19,18]) assumes: isolated
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single individuals, the search stagnates (i.e., no improved solutions are found)
and, until very recently, even that there is no randomness. (In general none
of these are true.) So, there is a large gap between theory and practice for
continuous optimisers.

We suggest an idea which has the potential to radically improve the situation.
It is general and can be applied to most continuous optimisers and arbitrary
fitness functions. The inspiration has come from the Finite Element Method.
FEM has been very successfully used to model continuous systems in a variety of
disciplines [3]. It divides continuous systems into elements. These are sufficiently
small that the behaviour of each can safely be modelled by a numerically simple
function and so the whole system is accurately modelled by simply combining
all its elements. Naturally, the accuracy of the results depends on the resolution
of the mesh of elements used (which can be different for different parts of the
system). When the mesh is fine enough, the analysis can be extremely accurate.

We discretise the system (in our case, the optimisation algorithm and the
fitness function) and then study the dynamics of the discretised system (see
Section 2). The new system is in one of a finite number of states. Crucially
we will assume the optimisation algorithm’s future behaviour can be captured
by the current state. This is true of most evolutionary algorithms, which only
depend on the current population and not on older populations. Hence we can
model the new system as a Markov chain. By studying the chain we can then
learn about the behaviour of the original (continuous) system. As we will see
there is a notion of resolution. If the discretisation mesh is chosen appropriately,
the accuracy with which the chain models the continuous system, over many
generations, sometimes even for quite coarse grids can be remarkable.

This gives us an effective general technique to produce discrete Markov chain
models of continuous stochastic optimisers that can approximate them on con-
tinuous problems to arbitrary precision and for arbitrary fitness functions. The
model is complete and includes the ability to estimate arbitrary statistics, such
as the evolution of average fitness, best fitness and population diversity. In par-
ticular, it is very easy to estimate the probability of an optimiser finding global
optima or being deceived.

Our objective is to introduce the idea and to provide a proof of concept for it.
So, we will apply the approach to a small, but diverse set of optimisers – (1+1)
Evolutionary Strategies (Section 3), Particle Swarm Optimisers (Section 4) and
real-valued Genetic Algorithms(Section 5) – and show how easily we can esti-
mate important properties such as the probability of finding the global optimum
and the expected runtime of each algorithm (Section 6). We will consider four
different problems and will compare the behaviour of the resulting chains with
actual runs (Section 7). We postpone the analysis and comparison of the result-
ing models. We draw some conclusions in Section 8.

2 Discretisation

We can obtain a discrete model of a continuous optimiser in two ways. Firstly, we
can perform a formal FEM approximation of the exact Markov chain representing
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the optimiser over continuous search/state-spaces. We illustrate this approach in
Section 2.1. Secondly, we can construct a discrete approximation of the optimiser
and then obtain an exact model for an approximation of the optimiser as shown in
Section 2.2. As we will see, when piecewise constant functions are used in FEM,
the two approaches lead to the same type of model: a discrete Markov chain.

2.1 FEM Approximation of Exact Markov Chain

Rudolph’s EA model. Let us recall the key elements of the generic model of
EA presented by Rudolph in [14]. In this model the EA is seen as a homogeneous
Markov chain (Xt : t ≥ 0) on a probability space (Φ,F , P) with image space
(E,A), where Φ is the set of outcomes, F is the set of events (subsets of Φ)
and P is a probability measure. Formally F must be a σ-algebra over Φ, i.e.,
it must be closed under complementation and countable unions of its members,
and P : F → [0, 1] must be a measure and P(Φ) = 1. The set E is the state
space for the system, while A is a σ-algebra over E. Since an EA consists of a
population of N individuals represented by the N -tuple (x1, · · · , xN ), where the
xi belong to some domainM (e.g.,M = R) for i = 1, · · · , N , typically the state
space is E = MN , but there are more complex cases.

In Rudolph’s EA model the probabilistic modifications on the population
caused by the genetic operators are represented by a stochastic kernel K(., .).
The map K : E×A → [0, 1] is termed a Markovian kernel for the chain if K(., A)
is measurable for any fixed set A ∈ A and K(x, .) is a probability measure on
(E,A) for any fixed state x ∈ E. In particular, K(xt, A) = P{Xt+1 ∈ A|Xt = xt}.

The t-th iteration of the Markovian kernel given by

K(t)(x, A) =

{
K(x, A) if t = 1,∫

E
K(t−1)(y, A)K(x, dy) if t > 1,

(1)

describes the probability of the EA’s state being in some set A ⊆ E within t
steps when starting from the state x ∈ E, i.e., K(t)(x, A) = P{Xt ∈ A|X0 = x}.

Let π(.) denote the initial distribution over subsets A ofA, e.g., the probability
distribution for the initial population at step t = 0. Then

P{Xt ∈ A} =

{
π(A) if t = 0,∫

E
K(t)(y, A)π(dy) if t > 0.

(2)

FEM applied to Rudolph’s model. The starting point of FEM is the def-
inition of a mesh and the assumption that the solution to the problem can be
expressed as a piecewise linear, quadratic, or higher order function over the mesh.
There is no limitation as to the simplicity (or complexity) of the elements. They
can even be constant. This is the type of elements we will use here, although one
could extend the results to the case of more sophisticated elements.

In the case of an EA or other stochastic optimiser exploring a continuous
search/state space, the function P{Xt ∈ A} in (2) provides a full probabilis-
tic description of the system. This is, however, clearly a function of the kernel
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K(t)(x, A) in (1). We will therefore take the latter as the solution of our problem
that we will represent by finite elements.

Let us assume that E is divided up into n disjoint sets Ei such that E =
⋃

i Ei.
These represent our mesh. We assume that the family of functions K(t)(x, A) is
piecewise constant on each element, i.e., ∀t, ∀i, ∀x′, x′′ ∈ Ei, ∀j : K(t)(x′, Ej) =
K(t)(x′′, Ej).

Let us now focus on A’s which are obtained as the union of some Ei, i.e., A =⋃
i∈I Ei, where I ⊆ {1, · · · , n}. Then we can write P{Xt ∈ A} =

∑
i∈I P{Xt ∈

Ei}. We can, therefore, focus our attention on the quantities P{Xt ∈ Ei}. For
t > 0, from (2) we obtain

P{Xt ∈ Ei} =
∫

E

K(t)(y, Ei)π(dy)

=
∑

j

∫
Ej

K(t)(y, Ei)π(dy)

=
∑

j

∫
Ej

K(t)(yj , Ei)π(dy)

=
∑

j

K(t)(yj , Ei)π(Ej)

where yj is any representative element of the set Ej (e.g., its centroid, if the set
is compact). From (1) we obtain

K(t)(yj , Ei) =
∫

E

K(t−1)(y, Ei)K(yj , dy)

=
∑

n

∫
En

K(t−1)(y, Ei)K(yj , dy)

=
∑

n

∫
En

K(t−1)(yn, Ei)K(yj , dy)

=
∑

n

K(t−1)(yn, Ei)
∫

En

K(yj, dy)

=
∑

n

K(t−1)(yn, Ei)K(yj , En)

If M is a matrix with elements mij = K(yj , Ei) we have that K(t)(yj , Ei) is
the (i, j)-th of M t and P{Xt ∈ Ei} is the i-th element of M tp, where p is a
vector whose elements are π(Ei). That is, the FEM approximation with order-0
elements to Rudolph’s exact EA model is an ordinary discrete Markov chain.

2.2 Exact Markov Model of Approximate Optimiser

An alternative to using FEM is to first obtain a discrete optimiser whose be-
haviour strongly resembles the behaviour of the original (continuous) optimiser,
and then use standard-type Markov chain theory to model such an optimiser.
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This approach effectively stands to the previous as the finite difference method
(FDM) stands to FEM. FDM is a method for integrating differential equations.
The difference between FEM and FDM is that, while in FEM one approximates
the solution to a problem, in FDM one discretises the equations of motion of the
system. However, it is well known that in certain conditions, e.g., when using
piecewise constant functions like we did in Section 2.1, the two methods coincide.
Because of its simplicity in the remainder of the paper we will use the second
approach.

Fitness Function f Discretisation. We partition a continuous N -dimensional
search space Ω into a finite number (n) of compact non-overlapping sub-domains
Ωi. We give each sub-domain Ωi a fitness value fi, which can be computed as the
mean of f over Ωi, i.e., fi =

∫
Ωi

f(x)dx/
∫

Ωi
dx, or simply fi = f(xci) where xci is

the centroid of cell i, i.e., xci =
∫

Ωi
xdx/

∫
Ωi

dx. We will call the pair Si = (Ωi, fi)
a plateau. So, effectively we turn our continuous fitness function into a piecewise-
constant function, which looks like a multidimensional histogram.

If, for example, we consider the case where Ω is a N -dimensional cube which
we partition using a regular grid of hypercubic cells, then we can represent each
sub-domain as

Ωi = [xci1
− r, xci1

+ r]× [xci2
− r, xci2

+ r]× · · · × [xciN
− r, xciN

+ r] (3)

where r is the cell “radius” and xcij
is the j-th component of a lattice point xci

(the centroid of each sub-domain). So, when r is known and fixed, we can simply
represent each plateau using its centroid and fitness value. That is Si = (xci , fi).
Figure 1 shows two one-dimensional fitness functions and two corresponding
piecewise-constant functions obtained by discretising them with r = 0.25.

Naturally, the choice of the mesh is crucial in determining the accuracy of
the resulting model. Clearly, the finer the grid, the more accurate the results.
However, also the method with which the fitness of plateaus is computed is
important. When these are computed with fi = f(xci), as we will do in the rest
of the paper, we run the risk of missing important landscape features of sub-
element size. This is less likely when fi is mean of f over Ωi. The disadvantage
of this method is that one needs to compute integrals of the fitness function.

Algorithm Discretisation. Most optimisers store information about one or
more points in Ω which are used to determine which areas of the search space
to sample next. Let us assume that there are P such points, which we will call a
population. The population is the state of the optimiser. To discretise the opti-
miser we need to discretise its population s so that instead of taking continuous
values it can only take a finite number of states. We use the same discretisa-
tion mesh {Ωi} as for the fitness function. So, in the discretised optimiser the
population s is in one of the states {xci}P .

Some optimisers use additional variables and parameters to control the search,
and these are often adapted dynamically. E.g., an ES may change the mutation
strength, while the velocities of the particles change in a PSO. When these
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quantities adapt during the search they are part of the state of the algorithm.
Hence they must also be discretised but the lattice used will depend upon the
algorithm.

We should note that both discretisation methods discussed above assume
that the search is contained within a finite domain Ω (typically a multidimen-
sional box). This is what most problems require and what many optimisers do.
However, some optimisers have unbounded state spaces. So, one cannot be sure
whether a certain state variable will stay permanently in pre-defined bounds.
There are many strategies to circumvent this problem. One could, for example,
use boundary elements of infinite size (but with an artificial, finite, centroid), or
use mapping/squashing functions to map an infinite space into a new, finite one.
These and other strategies put forward in the FEM community (e.g., [1,7,6,17]),
however, are beyond the scope of this article.

3 Evolutionary Strategy Model

To start with, let us consider the simplest possible evolutionary strategy: a
(1+1)-ES with Gaussian mutations but without adaptation of the mutation stan-
dard deviation σ.

Naturally, at any given time the only member of the population, xp, will be
located in some sub-domain Ωi. After discretisation, xp can only take one of a
discrete set of values, namely xp = xck

for k in {1, · · · , n}. So, our (1+1)-ES can
only be in one of n states. We will indicate the state of the ES with an integer s.

Our objective is to model this simple ES as a Markov chain with states of this
form. What we need to do is to compute the state transition matrix M = (mij),
where mij is the probability of the ES moving from state i to state j at the next
iteration. When M is available, we can compute the probability distribution πt

of the discretised ES being in any particular state at generation t, given its state
probability distribution at the start, π0, from πt = M tπ0.

Let p(x|xp) be the sampling probability density function when the parent is
xp. Normally in an (1+1)-ES random numbers are chosen independently for each
dimension when computing mutants. In our discretised ES we do the same thing.
So, we have separability of p. That is, p is given by a product of independent
probability distributions for each separate dimension:

p(x|xp) =
N∏

j=1

p(xj |xpj )

where xj and xpj are the j-th components of the vectors x and xp, respectively.1

The probability of sampling sub-domain Ωi is given by

Pr(Ωi|xp) =
∫

Ωi

p(x|xp) dx

1 Note that, while separability of the sampling distribution makes the model’s calcu-
lations simpler, it is not a requirement.
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So, if sub-domains Ωi have the product structure shown in Equation 3, we have

Pr(Ωi|xp) =
∏
j

Pr([xcij
− r, xcij

+ r]|xpj ) (4)

where

Pr([xcij
− r, xcij

+ r]|xpj ) =
∫ xcij

+r

xcij
−r

p(xj |xpj ) dxj . (5)

The standard sampling distribution used in the ES is a Gaussian distribution,

i.e., p(xj |xpj ) = G
(
xpj , σ

)
with G(μ, σ) = 1√

2π σ
e−

(x−μ)2

2σ2 . Let erf be the integral
of the Gaussian distribution. Therefore,

Pr([xcij
− r, xcij

+ r]|xpj )

=
1
2

(
erf
(

xcij
+ r − xpj

σ
√

2

)
− erf

(
xcij

− r − xpj

σ
√

2

))
. (6)

Let us now put the sub-domains in order of their fitness so that fi ≤ fj for
i < j. Since the population can only change if there is a fitness improvement,
only certain state transitions can occur. That is, a transition from state s to
state s′ is possible only if s ≤ s′.

Suppose the parent is in domain k, then the probability of it changing to
domain l is given by:

Pr(l|k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pr(Ωl|xck

) if l and k are such that fl > fk (NB: fl >
fk =⇒ l > k but not vice versa),

0 if k 
= l and fl ≤ fk,

1−
∑

l:fl>fk
Pr(l|k) if l = k, to guarantee the conservation of

probability.

This effectively means that the population remains in domain k if any of the
following three conditions is met: (a) the new sample is in Ωk, (b) the new sample
is in an Ωj (different from Ωk) with fj ≤ fk, or (c) the sample is outside Ω. So,
we can then write the state transition probability for the ES as

ms,s′ = Pr(s′|s) = Pr(Ωs′ |xcs)δ(fs′ > fs)+(1−
∑

l:fl>fs

Pr(Ωl|xcs))δ(s
′ = s), (7)

where Pr(Ωs′ |xcs) and Pr(Ωl|xcs) can be computed using Equations 4 and 6.
The function δ(z) returns 1 if z is true and 0 otherwise.

As an example, consider a domain Ω = [−2, 2] × [−2, 2] = [−2, 2]2, and let
us divide it into four squared sub-domains Ω1 = [−2, 0)2, Ω2 = [−2, 0)× [0, 2],
Ω3 = [0, 2] × [−2, 0), and Ω4 = [0, 2]2 of radius r = 1. These have centroids
xc1 = (−1,−1), xc2 = (−1, 1), xc3 = (1,−1) and xc4 = (1, 1). Let us further
assume that the fitness function f takes the following values at the centroids:
f1 = 1, f2 = 2, f3 = 3, and f4 = 4. Then by applying the equations above, for
σ = 1, we obtain the transition matrix:
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M =

⎛⎜⎜⎝
0.9499 0.0000 0.0000 0.0000
0.0232 0.9731 0.0000 0.0000
0.0232 0.0037 0.9768 0.0000
0.0037 0.0232 0.0232 1.0000

⎞⎟⎟⎠ .

By iterating the corresponding chain one can compute the distribution of states of
our discretised fixed-σ ES acting on fitness function f at any generation. However,
given the very low resolution chosen, we would not expect the predictions of the
chain to exactly reflect the real behaviour of the continuous optimiser. As we will
see later, however, with higher resolutions, predictions can be very accurate.

Let us now generalise this model to include a more interesting version of
(1+1)-ES: one where σ adapts during evolution. To keep our description sim-
ple, we will focus on an adaptive scheme which updates σ at each iteration [2,
page 84]. If the offspring produced by mutation is better than its parent (and is
in Ω) we increase σ according to the rule σ′ = σc where c is a suitable constant
> 1. If, the offspring is invalid or is not better than the parent, we reduce σ
using the rule σ′ = σ/c.

Naturally, for this new ES we can still discretise the parent individual using
the regular mesh adopted for the fitness function, as we did for the fixed-σ case.
However, we will use a non-uniform discretisation for σ. Indeed, it is apparent
that σ can only take discrete values already, all σ’s being of the form σ = σ0 · ci

for some integer i, where σ0 is the value of σ at generation 0. So, in any finite run
of G generations, σ ∈ {σ0 · c−G, σ0 · c−G+1, · · · , σ0 · cG}, that is it can only take
2G+1 different values. Following standard practice, in our ES we will limit σ so
that it never becomes too little or too big. This effectively means that we can use
a smaller range {σ0·c−Z , σ0·c−Z+1, · · · , σ0·cZ}, with Z < G. So, we can represent
the state of the ES with the tuple (s1, s2), where s1 ∈ {1, · · · , n} represents the
position of the parent and s2 ∈ {−Z, · · · , Z} gives the mutation σ used to create
its child. For the purpose of indexing the elements of the array M , we then
convert tuples into natural numbers by using the odometer ordering, whereby
(1,−Z) maps to 1, (1,−Z+1) maps to 2, etc. (i.e., (s1, s2) #→ (2Z+1)s1+s2−Z).

The calculations to compute M for the adaptive ES are based on the applica-
tion of Equation 7, with minor changes. Firstly, when we compute the probability
of a transition from state s = (s1, s2) to state s′ = (s′1, s

′
2), we use the σ corre-

sponding to s2, i.e., σ = σ0 ·cs2 . Secondly, for all state pairs where s1 < s′1 (there
was a fitness improvement) but where s′2 
= s2 + 1 (σ was not increased accord-
ing to our update rule), we know that ms,s′ = 0, so we don’t apply Equation 7.
Likewise, for all state pairs where s1 ≥ s′1 and where s′2 
= s2 − 1.

4 Particle Swarm Optimisation Model

4.1 Background

Particle Swarm optimisers (PSOs) [8,10] have been with us a few years. However
it is fair to say that most work on PSOs has been experimental confirmations of
their effectiveness, extensions to new applications or new algorithms. With very
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few exceptions (e.g., see the dynamical system model in [5,18] or the probabilistic
stagnation analysis in[4]), analytical, theoretical and mathematical analysis of
them is still relatively unexplored.

In a simple PSO, the swarm consists of a population of identical particles
which move across a problem landscape looking for high-fitness regions. The
particles have momentum and are accelerated by forces applied to them. The
PSO’s integration of Newton’s laws of motion is discrete and the particles only
sample the fitness landscape at discrete time steps. Thus the PSO particles draw
samples from the search space only at some points in their trajectories. In the
classic PSO, there are two attractive forces. The first pulls the particle towards
the best point it personally has ever sampled, whilst the second pulls it towards
the best point seen by any particle in its neighbourhood. The strengths of the
various forces are randomly controlled. It is the stochastic nature of the PSO
which allows it to effectively explore and ensures that the loci of the particles
are not closed trajectories. Instead, the particles randomly sample the region
nearby and between the particle’s own best and the swarm best.

One of the recent advances has been Jim Kennedy’s “Bare Bones” PSO
(BB-PSO) [9]. This optimiser is inspired by the observation that, at least until a
better location in the search space is sampled, the pseudo chaotic particle orbits
can be approximated by a fixed probability distribution centred on the point
lying halfway between the particle best and the swarm best. Its width is modu-
lated by the distance between them. The exact nature of the distribution is not
clear: it is bell shaped like a Gaussian distribution [11] but the tails appear to
be heavier, like a Cauchy distribution. The essential “bare bones” PSO, cuts out
the integration needed to find each particle’s position, and instead draws it from
a random distribution. This means we no longer need to track exactly each par-
ticle’s position and velocity. As with other swarm intelligence techniques, there
has been little theoretical work on this essential PSO. The model we are about
to present addresses this.

4.2 Model of “bare bones” PSO

Let us consider a fully-connected bare bones PSO to start with. In this PSO
the particles have no dynamics, but simply sample the neighbourhood of their
personal best and swarm best using a fixed probability density function. This
continues until either their personal best or the swarm best is improved. When
this happens, the parameters of the sampling distribution are recomputed and
the process is restarted.

In the unlikely event that more than one particle’s personal-best fitness is the
same as the best fitness seen so far by the whole swarm, we assume that swarm
leadership is shared. That is, each particle chooses as its swarm best a random
individual out of the set of swarm bests.

Naturally, at any given time the personal best for each particle and the swarm
best will be located in some sub-domain Ωi. In a discretised BB-PSO both the
particle best xp and swarm best xs can only take one of a discrete set of values,
namely xp = xck

and xs = xcj for some j and k in {1, · · · , n}. So, the discretised
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algorithm can only be in a finite set of states. However, we don’t need to represent
explicitly the swarm best, since the information is implicit in the fitness values
fi associated to each centroid. So, if P is the population size, there are nP such
states – one for each particle’s personal best – and we can represent states as P
dimensional vectors with integer elements, e.g.

s = (s1, · · · , sP ).

Let us now focus on computing state transition probabilities.
Let p(x|xs, xp) be the sampling probability density function when swarm best

is xs and particle best is xp. The standard sampling distribution used in the BB-
PSO is a Gaussian distribution. (Our approach could also be applied to Cauchy
or other distributions.) So, we have

p(xj |xsj , xpj ) = G

(
xsj + xpj

2
,
∣∣xsj − xpj

∣∣) .

Note that this distribution becomes a Dirac delta function when xsj = xpj .
Normally in PSOs random numbers are chosen independently for each dimension
when computing force vectors. In a bare bones PSO we do the same thing. So,
again we have separability of p and we can write

p(x|xs, xp) =
N∏

j=1

p(xj |xsj , xpj )

where xj , xsj , and xpj are the j-th components of the vectors x, xs and xp,
respectively.

Similarly to the ES case, the probability of sampling domain Ωi is given by
the integral of p across Ωi, and, if sub-domains Ωi have the product structure
shown in Equation 3, we have

Pr(Ωi|xs, xp) =
∏
j

Pr([xcij
− r, xcij

+ r]|xsj , xpj ) =
∏
j

∫ xcij
+r

xcij
−r

p(xj |xsj , xpj ) dxj .

(8)
For a Gaussian sampling distribution we have

Pr([xcij
− r, xcij

+ r]|xsj , xpj )

=

⎧⎪⎪⎨⎪⎪⎩
1
2

(
erf

(
xcij

+r− xsj
+xpj
2∣∣xsj

−xpj

∣∣√2

)
− erf

(
xcij

−r− xsj
+xpj
2∣∣xsj

−xpj

∣∣√2

))
if xsj 
= xpj ,

δ(xpj ∈ [xcij
− r, xcij

+ r]) otherwise.

Again, let us order sub-domains so that fi ≤ fj for i < j. Since particle
personal bests can only change if there is a fitness improvement, only certain
state transitions can occur. That is, a transition from state s = (s1, · · · , sP ) to
state s′ = (s′1, · · · , s′P ) is possible only if s1 ≤ s′1, s2 ≤ s′2, etc. We will denote
this by s ≤ s′.
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Let us identify the location of the swarm best for a PSO in a state s. Typically
in a fully-connected PSO there is only one particle with the best fitness value,
but, within a discretised PSO, it is not uncommon to have more than one. So,
in general, we have a set of swarm bests:

B(s) =
⋃

i:f(si)=fm(s)

{si}

where fm(s) = maxj fsj and |B(s)| ≥ 1. More generally, to allow other commu-
nication topologies, we need to talk about sets of neighbourhood bests – one set
for each particle. We will denote these sets as B(s, i), for i = 1, · · · , P .

Let us consider a PSO in state s. In a BB-PSO, at each iteration, the particles
sample the search space independently. So, if the i-th particle’s best is in plateau
k (that is, si = k), then the probability of it changing to plateau l is given by:

Pr(l|B(s, i), k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
|B(s,i)|

∑
b∈B(s,i) Pr(Ωl|xcb

, xck
) if l and k are such that

fl > fk,
0 if k 
= l and fl ≤ fk,

1−
∑

l:fl>fk
Pr(l|B(s, i), k)

if l = k (to guarantee
the conservation of proba-
bility).

Like for the ES case, this effectively means that the particle remains in plateau
k if any of the following three conditions is met: (a) the new sample is in Ωk, (b)
the new sample is in an Ωj (different from Ωk) with fj ≤ fk, or (c) the sample
is outside Ω.

Because of the independence of the particles (over one time step), we can then
write the state transition probability for the whole PSO as

ms,s′ =
∏

i

Pr(s′i|B(s, i), si)

=
∏

i:fs′
i
>fsi

1
|B(s, i)|

∑
b∈B(s,i)

Pr(Ωs′
i
|xcb

, xcsi
)

×
∏

i:fs′
i
≤fsi

⎡⎣⎛⎝1−
∑

l:fl>fsi

1
|B(s, i)|

∑
b∈B(s,i)

Pr(Ωl|xcb
, xcsi

)

⎞⎠ δ(s′i = si)

⎤⎦ .

Naturally, further decompositions can be obtained using Equation 8.
As an example, let us consider again the domain Ω = [−2, 2]2, which we

divide into four sub-domains Ωi of radius r = 1, with centroids xc1 = (−1,−1),
xc2 = (−1, 1), xc3 = (1,−1), xc4 = (1, 1) and associated fitness f1 = 1, f2 = 2,
f3 = 3, and f4 = 4, respectively.

If the population includes only two particles (P = 2), then we have only 16
different states for the PSO: (1,1), (1,2), ..., (4,4). For example, the state (1, 1)
represents the situation where both particles are in the lowest plateau (so, both
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are swarm bests); in state (1, 2) one particle is in the lowest plateau, while the
other (the swarm best) is in the second lowest plateau; etc.

By applying the previous equations we can then obtain the following transition
matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 1)

0 0.659 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 2)

0 0 0.659 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 3)

0 0 0 0.651 0 0 0 0 0 0 0 0 0 0 0 0 (1, 4)

0 0 0 0 0.659 0 0 0 0 0 0 0 0 0 0 0 (2, 1)

0 0.341 0 0 0.341 1 0 0 0 0 0 0 0 0 0 0 (2, 2)

0 0 0 0 0 0 0.766 0 0 0 0 0 0 0 0 0 (2, 3)

0 0 0 0.117 0 0 0 0.659 0 0 0 0 0 0 0 0 (2, 4)

0 0 0 0 0 0 0 0 0.659 0 0 0 0 0 0 0 (3, 1)

0 0 0 0 0 0 0 0 0 0.766 0 0 0 0 0 0 (3, 2)

0 0 0.341 0 0 0 0.117 0 0.341 0.117 1 0 0 0 0 0 (3, 3)

0 0 0 0.117 0 0 0 0 0 0.117 0 0.659 0 0 0 0 (3, 4)

0 0 0 0 0 0 0 0 0 0 0 0 0.651 0 0 0 (4, 1)

0 0 0 0 0 0 0 0 0 0 0 0 0.117 0.659 0 0 (4, 2)

0 0 0 0 0 0 0.117 0 0 0 0 0 0.117 0 0.659 0 (4, 3)

0 0 0 0.117 0 0 0 0.341 0 0 0 0.341 0.117 0.341 0.341 1 (4, 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where we have added one extra row and column to more clearly identify states.

5 Real-Valued Genetic Algorithm Model

We consider a simple real-valued GA with finite population, fitness proportionate
selection, no mutation, and 100% recombination. Recombination produces the
offspring, o = (o1, · · · , on), by sampling uniformly at random within the hyper-
parallelepiped defined by the parents, p′ = (p′1, · · · , p′N ) and p′′ = (p′′1 , · · · , p′′N).
That is, oi = ρi(p′′i − p′i) + p′i, where ρi is a uniform random number in [0, 1] for
i = 1, · · · , N . We will refer to this type of recombination as blend crossover.

We use the same state representation as for BB-PSO, s = (s1, · · · , sP ), except
that we interpret each si as the position of an individual in the search space,
rather than a particle’s best.

The (offspring) sampling distribution for parents p′ and p′′ under blend re-
combination is

p(o|p′, p′′) =
∏

i

p(oi|p′i, p′′i )

where

p(oi|p′i, p′′i ) =

{
1/|p′i − p′′i | if oi ∈ [min(p′i, p

′′
i ), max(p′i, p

′
i)],

0 otherwise.

Note that the sampling distribution becomes a Dirac delta function when
p′ = p′′.
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As before, the probability of sampling domain Ωi is given by the integral of
p across Ωi. So, for sub-domains Ωi as in Equation 3, we have

Pr(Ωi|p′, p′′) =
∏
j

∫ xcij
+r

xcij
−r

p(oj |p′j , p′′j ) doj (9)

where∫ xcij
+r

xcij
−r

p(oj |p′j, p′′j ) doj

=

⎧⎨⎩max
(

0,
min(xcij

+r,max(p′
j ,p′′

j ))−max(xcij
−r,min(p′

j ,p′′
j ))

|p′
j−p′′

j |

)
if p′j 
= p′′j ,

δ(p′′j ∈ [xcij
− r, xcij

+ r]) otherwise.

By adding the contributions from all possible pairs of parents (with their selec-
tion probabilities) we can now compute the total probability that the offspring
will sample domain Ωi in a particular population P = (p1, · · · , pP ):

Pr(Ωi|P) =
∑
p′∈P

∑
p′′∈P

Pr(Ωi|p′, p′′)φ(p′)φ(p′′) (10)

where φ(x) is the selection probability of parent x in population P . For fitness
proportionate selection φ(x) = f(x)/

∑
y∈P f(y).

Naturally, when P is the population associated to state s, Equation (10)
gives us the probability, Pr(Ωi|s), of generating an individual in domain i for a
population in state s. Because each individual in a population is generated by
an independent Bernoulli trial, we can then trivially compute the Markov chain
transition probability from any state s to any state s′ as

ms,s′ =
∏

i

Pr(Ωs′
i
|s).

6 Success Probability and Expected Run Time of
Continuous Optimisers

As mentioned above, when M is available, we can compute the probability dis-
tribution πt of a discretised continuous optimiser being in any particular state
at generation t, given its state probability distribution at the start, π0, from
πt = M tπ0. Since for each optimiser we know what π0 is, to compute the prob-
ability with which the element containing the global optimum is visited at a
particular generation t, one only needs to add up the appropriate components
of the πt vector. We will informally call this quantity the success probability.
For example, in an ES with fixed σ we have that the components of π0 are all
1/n and the success probability is simply given by the last component of πt

(assuming domains are ordered by fitness).
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We can also estimate the expected run time of continuous optimisers by com-
puting the expected waiting time of the corresponding discrete Markov chain to
visit a particular target state or set of states J . Following [15, pages 168–170]
we have that the mean passage time for going from state i to the set of states J ,
given that it is currently outside the set is given by:

ηi,J =
∑
j∈J

mi,j +
∑
k �∈J

mi,k(1 + ηk,J ) (11)

where mi,j are the elements of Markov matrix for the system. Simple algebraic
manipulations of (11) lead to the following system of simultaneous equations:

ηi,J −
∑
k �∈J

mi,kηk,J = 1 (12)

Once solved, we can then compute the expected waiting time to reach state J ,
given a random initial state (described by the distribution p(.)) as

EWTJ =
∑
i�∈J

p(i)ηi,J . (13)

If the calculation is applied to an initial distribution where all states are equally
likely (the standard initialisation strategy in EAs) and with J being the element
containing the global optimum, we have

E[runtime] =

∑
i�∈J ηi,J

number of elements− 1
. (14)

Note that this calculation assumes that the algorithm has a way of identifying
when the element containing the global optimum is sampled and stops when this
happens. Often this is not the case. In this case, (14) should be interpreted as
the average first hitting time.

7 Experimental Results

We first apply the Markov chain models described in the previous sections to
the two one-dimensional (N = 1) fitness functions in Figure 1. These are ef-
fectively continuous versions of the onemax problem (Ramp) and the deceptive
trap function. The results of these tests are reported in Sections 7.1– 7.3. Then,
in Section 7.4, we study two-dimensional problems.

7.1 Evolutionary Strategies

In a series of experiments we applied the model of the (1+1)-ES with fixed-σ
and compared its behaviour with the behaviour of the real algorithm acting
on the Ramp and Deceptive continuous fitness functions. We chose the domain
Ω = [−0.5, 4.5). This was divided into n sub-domains Ωi = [xci − r, xci + r) with
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Fig. 1. Ramp and Deceptive test functions and two corresponding piece-wise constant
discretisations

equally spaced centroids xci . To assess the behaviour of the algorithm in real runs
we performed 1,000 independent runs, where, in each run and each generation,
we recorded the sub-domain Ωi occupied by the parent. In particular we were
interested in comparing the proportion of runs in which the individual was in
the domain containing the global optimum Ωn vs. the frequency predicted by
the Markov chain over a number of generations.

Figure 2 shows the results of the comparison for different values of σ and for
the case of n = 10 (r = 0.25), i.e., where we discretise the evolutionary strategy
using only 10 states. As the figure indicates, as long as σ is bigger than the
cell width, 2r, the model predicts the success rate with considerable accuracy
throughout our runs (50 generations). When σ is comparable to r, there are
errors of up to around 10% in the prediction. Similar accuracies were obtained
for the deceptive fitness function (see Figure 3). In all cases, despite its tiny size,
the chain was able to predict that Deceptive is harder than Ramp.

To illustrate how one can use our Markov model to study how the compu-
tational complexity of an algorithm varies as the parameter σ varies and as a
function of the fitness function we also computed (as described in Section 6) the
expected first hitting time for the global optimum for the Ramp and Deceptive
functions. In this case we used a model with n = 40 elements to ensure good
accuracy also at small values of σ. Figure 4 shows the results for Ramp. As one
can see too small values of σ slow down the march towards the optimum, while
too big values make the search excessively random (note, resampling and the
rejection of samples outside Ω make the search even slower than pure enumer-
ation which on average would require 20 trials to find the optimum). So, the
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Table 1. Comparison between the probability of sampling the optimum domain pre-
dicted by the Markov chain for a variable-σ ES and empirical data (averages over 1,000
independent runs) after 50 generations for different discretisation resolutions, n. (NB
the size of the optimum domain reduces as the resolution increases.)

Ramp Deceptive

Resolution (n) Model Runs Model Runs

5 0.973 1.000 0.328 0.378
10 0.998 1.000 0.376 0.388
20 0.998 1.000 0.374 0.381
40 0.988 0.985 0.344 0.349

optimum σ for this function appears to be between 0.5 and 1, as also suggested
by the success rates reported in Figure 2. As shown in Figure 5, the results for
for Deceptive are radically different. Firstly, for very low values of σ the problem
of finding the expected hitting time becomes unstable and so we cannot compute
reliable values. It is clear, however, that the search for the global optimum be-
comes easier as σ grows. This is to be expected. Most evolutionary algorithms do
worse than random search on deceptive problems. So, by increasing the search
variance, we turn our ES more and more into a random searcher, thereby im-
proving performance (although resampling and the rejection of samples outside
Ω prevent performance to ever reaching the pure enumeration limit of 20).

We then considered the (1+1)-ES with variable σ and studied the proportion
of runs in which the individual occupied the domain containing the global op-
timum Ωn. In our tests we allowed both the discretise algorithm and real one
to use a range of 21 different σ’s in the range {σ0 · c−Z , σ0 · c−Z+1, · · · , σ0 · cZ}
with σ0 = 1, Z = 10 and c = 1.1. Table 1 shows how the accuracy of the model
varies as a function of the number of domains (n). Only the smallest chain, where
n = 5 and σ can take 21 values (i.e., the Markov chain has 105 states), deviates
significantly from the success probability2 observed in real runs. Figure 6 shows
how accurate the predictions of the model can be throughout a run. Note that as
one increases the grid resolution, the size of the element containing the optimum,
|Ωn|, decreases. So, it becomes harder and harder to hit such a region (for both
the model and the algorithm). This is the reason why in Table 1 the figures for
n = 20 are bigger than for n = 40.

7.2 Bare-Bones PSO

In the experiments with the bare bones PSO we performed 5,000 runs for each
setting. Runs lasted 100 generations. In this case we wanted to compare not just
the success probability, but the whole state distribution at the end of the runs.

Figures 7–12 compare the distributions obtained in real runs with those pre-
dicted by the chain for Ramp and Deceptive and for population sizes P = 2,
P = 3 and P = 4 in the case where the domain is divided into just n = 5 sub-
domains. Because the number of states grows very quickly with the resolution,
2 More precisely, the probability of sampling Ωn.
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n, and the population size, P , and only very few states have non-zero probabili-
ties, it is very hard to obtain a meaningful plot of the full state distribution. So
we plot only the 20 states with the largest probabilities. Despite the low resolu-
tion used, we obtain an extremely good match between the distributions for all
population sizes tested. Also, the success probabilities (the rightmost point in
the plots for Ramp, and the one just before the last for Deceptive) match very
closely.

Naturally, as with the ES models, increasing the resolution n (see Figure 7)
improves fidelity and provides more accurate information on the distribution of
the population.

7.3 Real-Valued GA

We performed 5,000 real-valued GA runs for each parameter setting. Runs lasted
100 generations. As with the PSO, we focused on the state distribution at the
end of the runs.

Figures 13–18 compare the distributions obtained in real runs with those
predicted by the chain for the case where the domain is divided into just n = 5
sub-domains and for population sizes P = 2, P = 3 and P = 4. Again, the figures
plot the 20 states with the largest probabilities. Despite the low resolution used,
we obtain an extremely good match between the distributions for all population
sizes tested and the success probabilities match very closely.
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Fig. 9. As in Figure 7 but for P = 3 and n = 5
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Fig. 11. As in Figure 7 but for P = 4 and n = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10  12  14  16  18  20

pr
ob

ab
ili

ty

state

Markov chain
Real runs

Fig. 12. As in Figure 8 but for P = 4
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Fig. 13. Comparison between predicted and observed state distributions at generation
100 for a GA (population size P = 2) applied to the Ramp function and for grid
resolutions n = 5, n = 10 and n = 20

Again, increasing the resolution n (see Figure 13) provides more accurate
information on the distribution of the population.

7.4 Two-Dimensional Problems: Sphere and Rastrigin

Very accurate results can also be obtained for higher dimensional and realistic
test functions. Figure 19, for example, compares the success probability esti-
mated by the chain and the actual success rate in 100,000 independent runs for
the variable-σ (1 + 1)-ES used in Section 7.1 on a 2–D sphere function over the
interval [−5, 5)2 discretise with a 21× 21 = 441 element grid. Since we allowed
21 different σ’s, the total number of states in the Markov chain was 9261. This
might appear large, however the transition matrix is very sparse and the chain
can be computed and iterated in minutes on an ordinary personal computer.

Results of a similar quality were obtained when we applied the approach to
a 2–D Rastrigin function over the interval [−5, 5)2. Because of the complexity
of this function (it presents 100 optima in the interval chosen), we used a more
sophisticated variable meshing technique. The discretisation proceeded at the
21 × 21 resolution until an element with high fitness was found. When this
happened the element was replaced by a set of smaller ones, effectively locally
increasing the resolution to that of a 61×61 grid. This gave a finite element grid
of 1329 elements instead of the 441 used for the sphere function. Consequently
the total number of states was about three times higher, namely 27909. As shown
in Figure 20, chain and experiments are in excellent agreement. Note that the
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Fig. 14. Comparison between predicted and observed state distributions at generation
100 for a GA (population size P = 2) applied to the Deceptive function and for a grid
resolutions n = 5
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Fig. 17. As in Figure 13 but for P = 4 and n = 5
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Fig. 20. ES with variable σ: comparison between predicted and observed success prob-
abilities for a 2–D Rastrigin function. Observations are means of 1,000,000 runs.

element containing the optimum is 9 times smaller that for the sphere function.
So, to obtain reliable statistics we performed 1,000,000 runs.

8 Conclusions

We have introduced a finite element method to construct discrete Markov chain
models for continuous optimisers and we have tested it on two types of evolution-
ary strategies, on the “bare bones” particle swarm optimiser and on a genetic
algorithm with continuous gene values. Whilst the models are approximate, they
can be made as accurate as desired by reducing the size of the sub-domains used
to quantise the system.

Being Markov chains, the models allow one to compute everything that one
needs to estimate about the distribution of states of a search algorithm over any
number of generations and for any fitness function. This is a complete charac-
terisation of the behaviour of the search algorithm. For example, in this single
framework, in addition to the success probability and the expected runtime, one
could calculate the evolution of mean fitness, the population diversity and the
size of basins of attraction. We can also compare the behaviour of algorithms by
comparing their Markov chains for different problems and compare how differ-
ent fitness functions influence the behaviour of an algorithm by comparing the
corresponding chains.

This is remarkable, but there is of course a price to pay. The price is that,
unsurprisingly, like most other models of evolutionary algorithms, the model
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scales exponentially with the population size, or more generally the size of the
memory used by a search algorithm.

In future research we intend to present a deeper analysis and comparison of
the Markov chains obtained for different algorithms. We will look at the limiting
behaviour of system in the infinite time limit by applying traditional Markov
chain analysis techniques. We will also study our models mathematically in the
limit of the discretisation resolution going to zero. Finally we want to apply the
method to a broader variety of search algorithms, including simulated annealing,
traditional particle swarms with velocities, (μ+λ)-ESs, and differential evolution.

The method also opens the way to using the mathematical power of Markov
chains, specifically existing results on their limiting distribution and rates of con-
vergence, for a far wider range of practical evolutionary algorithms and realistic
fitness functions, than has previously been the case.
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Abstract. Barrier trees are a convenient way of representing the struc-
ture of complex combinatorial landscapes over graphs. Here we generalize
the concept of barrier trees to landscapes defined over general multi-
parent search operators based on a suitable notion of topological con-
nectedness that depends explicitly on the search operator. We show that
in the case of recombination spaces, path-connectedness coincides with
connectedness as defined by the mutation operator alone. In contrast,
topological connectedness is more general and depends on the details of
the recombination operators as well. Barrier trees can be meaningfully
defined for both concepts of connectedness.

1 Introduction

The concept of energy landscapes has proven to be of fundamental relevance in
investigations of complex disordered systems, from simple spin glass models to
biopolymer folding. Barrier trees [1,2,3,4,5] provide a convenient condensed rep-
resentation of the discrete landscapes such as the energy landscapes of biopoly-
mer folding and the fitness landscapes of complex combinatorial optimization
problems. Barrier trees encapsulate information of mutual reachability of local
optima and the energy/fitness barriers that separate them. The concept easily
generalizes to PO-set-valued landscapes, which arise naturally in multi-objective
optimization [6]. In most studies it has however been restricted to mutation (sin-
gle parent) as the search operator. In [7,8], barrier trees are used for studying
heuristic optimization algorithms including genetic algorithms. In this work the
barrier trees are built relative to the Hamming (bit-flip) neighborhood, i.e., with-
out regard to the structure of the underlying search operator.
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In the case of multi-parent search operators it is not obvious how barrier
trees should be defined in such a way that the structure of the search spaces
that is induced by the search operators is faithfully represented. In a series of
papers [9,10,11,12] we have explored how generalized topology can be used to
describe the search spaces underlying evolutionary processes with recombina-
tion and chemical reaction networks. In the latter, the educts and products of
chemical reactions take on the roles of the parents and offsprings, respectively.
In this contribution we first demonstrate that search spaces of combinatorial op-
timization problems inherit a definite topological structure from the collection
of search operators that is used by a particular algorithm, such as Simulated
Annealing, a Genetic Algorithm, or Genetic Programming. We then show that
this topological structure implies a natural concept of connectedness.

The connectedness of subsets in a search space is a property that, intuitively,
should have a close relation to properties of reachability or accessibility. Such
notions, however, lie at the heart of theories that explain the performance of
heuristic optimization procedures on value landscapes. The simplest example
are the “cycles” in the theory of Simulated Annealing [13], which in essence
can be understood as the connected components of a subset of search space
on which the cost function has values better than a given threshold η. We will
see that, in conjunction with the cost function, connectedness of subsets then
defines a structure of basins and barriers that generalizes the notion of barrier
trees from graphs to spaces induced by arbitrary search operators. We finally
give a brief example demonstrating that such a type of landscape analysis is
indeed computationally feasible at least for certain Genetic Algorithms.

2 Search Operators and Generalized Topology

A (combinatorial) optimization problem is usually specified in terms of a set X
of configurations and a cost function f : X → R, where R is an ordered set. In
the case of multi-objective optimization [14] we have to admit partially ordered
value sets R [6]. A large class of heuristic algorithms, including Simulated An-
nealing, Genetic Algorithms, Evolutionary Strategies, or Genetic Programming,
attempt to find optimal solutions by moving through the set X and evaluating
the cost function at different points x ∈ X . This search procedure imposes an
implicit mathematical structure on the set X that determines how points or,
more generally, subsets are mutually accessible. In a more biologically inspired
setting, this search space is uniquely determined by the genetic operators at
work: mutation, recombination, genome rearrangements, and so on.

2.1 Mutation and Move Sets

In the case of point mutations and constant length sequences, the situation is
straightforward. Naturally, sequences that differ by a single mutation are neigh-
bors in “sequence space” [15,16]. The sequence space can thus be represented as
a graph, also known as Hamming graph or generalized hypercube. The Hamming
distance, dH , counts the number of positions at which two sequences differ.
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Move sets are by no means restricted to mutating letters in fixed length string
representations. Other examples that are commonly used in an evolutionary opti-
mization context are permutation operators (e.g. for tours of Traveling Salesman
Problems) or the exchange operator (e.g. for Graph Bipartitioning), see [17] and
the references therein. These moves, which depend on a single “parent”, not on
a population, naturally define edges on the set X of configurations. Therefore,
the search space has the structure of a graph. Obviously, this graph is connected
if and only if the move set is ergodic.

2.2 Recombination Spaces

The situation becomes more complicated, however, when recombination
(crossover) is considered [18]. The analogue of the adjacency relation of the
graph is the recombination set R(x, y), which is defined as the set of all (pos-
sible) recombinants of two parents x and y. Recombination sets satisfy at least
two axioms:

(X1) {x, y} ∈ R(x, y),
(X2) R(x, y) = R(y, x).

Condition (X1) states that replication may occur without recombination, and
(X2) means that the role of the two parents is interchangeable. Often a third
condition

(X3) R(x, x) = {x}

is assumed, which is, however, not satisfied by models of unequal crossover [19,9].
Functions R : X × X → P(X) satisfying (X1-X3) were considered recently as
transit functions [20] and as P-structures [21,22].

In the case of strings of fixed lengths n one requires additional properties. We
write xi for the i-th letter in string x. We may assume a different alphabet Ai

for each position i. While for GAs one usually has Ai = {0, 1} for all positions i,
one may have a different number alleles for different genes e.g. in a population
genetic setting.

(X4) R(x, y) ⊆ span{x, y}, where

spanA = {z ∈ X |∀i : ∃x ∈ A : zi = xi} (1)

is the linear span of a set A.
(X5) For x, y ∈ X and i 
= j there is a recombinant z ∈ R(x, y) with zi = xi

and zj = yj.

The linear span spanA correspond to Antonisse’s definition of a schema [23].
It also can be interpreted as a “hyperplane” in the Hamming graph with vertex
set X and Hamming neighborhood on X =

∏n
i=1Ai, see e.g. [24]. We will not

pursue the vector spaces aspects of this construction here, however.
It follows directly from equ.(1) that span is idempotent:

span(spanA) = spanA. (2)
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For string recombination operators, (X4) implies (X3) since span{x} = {x}.
Furthermore, we note that for uniform crossover, R(x, y) = span{x, y}.

Condition (X5) characterizes proper recombination operators in which any
two sequence positions can be separated by cross-over. Note that strict 2-point
cross-over (i.e., exactly two break-points within the strings) is not proper in this
sense, since the first and the last sequence position always stay together in the
offsprings. The more common definition, which calls for at most break-points, is
of course proper.

We note for later usage we collect here a few simple properties of recombina-
tion spaces.

Lemma 1. z ∈ R(x, y) implies span{x, z} ⊆ span{x, y}.
Proof. u ∈ span{x, z} iff ui = xi or ui = zi for i = 1, . . . , n and z ∈ span{x, y}
iff zi = xi or zi = yi. Thus ui = xi or ui = yi, and hence u ∈ span{x, y}.
Lemma 2. Let R be a proper recombination operator. Then R(x, y)\{x, y} 
= ∅
if and only if dH(x, y) ≥ 2.

Proof. If dH(x, y) ≥ 2 then there are two sequence positions i 
= j such that
xi 
= yi and xj 
= yj . Since R separates i and j, there is a recombinant z with
zi = xi 
= yi and zj = yj 
= xj , i.e., z 
= x and z 
= y.

In the case of Genetic algorithms it seems natural to define reachability via the
union of those of mutation and recombination.

2.3 Closure Functions

In the most general case we are given a collection X of pairs (A, B[A]) where
A, B[A] ⊆ X and B[A] are interpreted as the offsprings that are generated from
A. In the case of a genetic algorithm, for example, X encodes both mutational
offsprings from individual sequences and pair-wise cross-over products. The col-
lection X can be extended to a set-valued set-function c : P(X) → P(X) that
describes for each subset A of X the collection of all possible offsprings, i.e.,
the set of points in X that are accessible from A by a single application of the
search operator:

c(A) =
⋃{

B[A′]
∣∣A′ ⊆ A ∧ A′ 
= ∅ ∧ (A′, B[A′]) ∈ X

}
(3)

The condition A′ 
= ∅ prohibits “spontaneous creation”, i.e., enforces c(∅) = ∅.
In the case of recombination operators on strings, for example, we have

cR(A) =
⋃

x,y∈A

R(x, y) . (4)

Equ.(4) together with the definition of the linear span implies

cR(A) ⊆ spanA (5)

The function c defined in equ. (3) is a closure function in the sense of gener-
alized topology. Indeed, following Kuratowski [25], topological spaces are often
defined in terms of such a closure function instead of open or closed sets:
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(K0) c (∅) = ∅.
(K1) A ⊆ B implies c (A) ⊆ c (B) (isotonic).
(K2) A ⊆ c (A) (expanding).
(K3) c (A ∪B) ⊆ c (A) ∪ c (B) (sub-additive).
(K4) c (c (A)) = c (A) (idempotent).

In our case, however, we can only verify that the first three axioms will hold.
(K0) and (K1) follow directly from the construction of c from X. Such spaces
are isotone. In addition, axiom (K2) is satisfied if and only if the parental geno-
types can be transmitted to the next generation. This type of space is known
as neighborhood space. Axiom (K3) holds for mutation only models, in which
the set of offsprings are generated from a parent without regard to the rest of
the population. In the finite case, spaces satisfying (K0) through (K3) are ex-
actly the finite graphs. No good argument can be made for idempotency (K4)
in our setting. The structure of search spaces thus is strictly weaker than that
of topological spaces. The recombination closure space (X, cR), equ.(4) is an
example of a finite neighborhood space. Such structure we recently studied as
“N-structures” [26].

If X is finite, we can obtain a an idempotent function c by repeated application
of c:

c(A) = cN (A) = c(c(c(. . . (c︸ ︷︷ ︸
N times

(A) . . . ))) (6)

for large enough N . (This construction works also in the infinite case, where N
is in general an ordinal number.) In the most prominent cases of recombination
operators, 1-point crossover and uniform crossover, it is not hard to verify that

cR(A) = spanA (7)

In [27] it is shown that cR(A) is always a schema in the sense of Antonisse for
the “usual” string recombination operators.

The idempotent closure function c, in contrast to c, gives a rather coarse
grained description of the search space. Furthermore, it is known that a mean-
ingful not-trivial topological theory can be constructed without the (K4) axiom.
Indeed, Eduard Čech [28] wrote a classical treatise of point set topology based
on non-idempotent closure functions. Even more general spaces, lacking also
the additivity assumption (K3) were also considered in the literature, see e.g.
[29,30,31,32,33].

As in classical topology on can speak about the interior of a set (I(A) =
X \ c(X \ A)) and of neighborhoods N of a point x (N ∈ N (x) iff x ∈ I(N))
or of a set A (N ∈ N (A) iff A ⊆ I(N)). Both the interior function I and
the neighborhood systems N of individual points can be used as alternative,
equivalent, definitions of the same mathematical structures. We refer to [10,34]
for details on this topic our previous papers for details on this topic. In the
following discussion we will mostly avoid the use of interior and neighborhood
functions.
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2.4 Continuity

The notion of continuity lies at the heart of topological theory. Its importance
is emphasized by a large number of equivalent definitions, see e.g. [35,36]. Let
(X, c) and (Y, c) be two isotone spaces, i.e., spaces satisfying (K0) and (K1).
Then f : X → Y is continuous if one (and hence all) of the following equivalent
conditions holds:

(i) c
(
f−1(B)

)
⊆ f−1(c (B)) for all B ∈ P(Y ).

(ii) f−1(IB) ⊆ If−1(B) for all B ∈ P(Y ).
(iii) B ∈ N (f(x)) implies f−1(B) ∈ N (x) for all x ∈ X .
(iv) f(c (A)) ⊆ c (f(A)) for all A ∈ P(X).

3 Connectedness

3.1 Topological Connectedness

Topological connectedness is closely related to separation. Two sets A, B ∈ P(X)
are semi-separated if there are neighborhoods N ′ ∈ N (A) and N ′′ ∈ N (B) such
that A ∩ N ′′ = N ′ ∩ B = ∅. A set Z ∈ P(X) is connected in a space (X, c)
if it is not a disjoint union of nontrivial semi-separated pairs of non-empty sets
A, Z \A. There have been several attempts to use connectedness as the primitive
notion in topological theory [37,38,39].

If (X, c) is isotone (as we shall assume throughout this manuscript) then A
and B are semi-separated if and only if c (A)∩B = A∩c (B) = ∅. Connectedness
in isotonic spaces can thus be characterized by the Hausdorff-Lennes condition:
A set Z ∈ P(X) is connected in an isotonic space (X, c) if and only if for each
proper subset A ⊆ Z holds

[c (A) ∩ (Z \A)] ∪ [c (Z \A) ∩A] 
= ∅ (8)

The collection of connected sets satisfies the following three properties in isotonic
spaces [10,40]:

(c1) If Z consists of a single point, then Z is connected.
(c2) If Y and Z are connected and Y ∩ Z 
= ∅ then Y ∪ Z is connected
(c3) If Z is connected and Z ⊆ c (Z), then c (Z) is also connected.
(c4) Let I be an arbitrary index set and x ∈ X . Suppose Zı is connected and

x ∈ Zı for ı ∈ I. Then W :=
⋃

ı∈I Zı is connected.

As a short example of the formalism, we give here an elementary proof of property

(c4). We first observe the following simple fact: Suppose A and B are semi-separated

and A′ ⊆ A, B′ ⊆ B; then A′ and B′ are also semi-separated. Now suppose W as

defined above is not connected, i.e., there is a semi-separation W = W ′∪̇W ′′. Assume

w.l.o.g. x ∈ W ′. Since the Zı collectively cover W , there is a set Zυ such that Zυ∩W ′′ �=
∅. Since x ∈ Zυ we also have Zυ∩W ′ �= ∅. Since W ′ and W ′′ are semi-separated, Zυ∩W ′

and Zυ ∩W ′′ are also semiseparated, i.e., (Zυ ∩W ′)∪̇(Zυ ∩W ′′) is a semiseparation of

Zυ, and hence Zυ is not connected, a contradiction.
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In particular, a neighborhood space is connected if and only if it is not the
disjoint union of two closed (open) sets [40, Thm.5.2]. This result generalizes the
analogous well-known statement for topological spaces.

Now consider a set A ⊂ X and a point x ∈ A and define:

A[x] =
⋃{

Z ⊆ A
∣∣x ∈ Z and Z is connected

}
, (9)

i.e., A[x] is the union of all connected subsets of A that contain x. By (c4), the
set A[x] is itself connected, i.e., A[x] is the unique maximal connected subset of A
that contains x. By construction, the collection of subsets {A[x]|x ∈ X} defines
a partition of the set A into maximal connected subsets. These sets are called
the connected components of A. In particular, X [x] is the connected component
of x in the entire space.

The relationship of connected components and semi-separations is more com-
plicated than one might guess. The following result for additive spaces matches
our intuition:

Lemma 3. Suppose A ⊆ X has a finite number k > 1 of connected components
and let Q ⊆ A be a such a connected component. In a Pr’s-topology, Q and A\Q
are semi-separated.

Proof. Observe that there is a semiseparation A′, A\A′ since A is not connected.
Suppose Q ⊆ A′. Now either Q = A′ or A′ is not connected. In the latter
case there is a set A′′ ⊆ A′ such that A′′∪̇(A′ \ A′′) is a semiseparation and
Q ⊆ A′′. Thus c(A \ A′) ∩ A′′ = ∅, c(A′ \ A′′) ∩ A′′ = ∅, and by (K3) c(A \
A′′) ∩ A′′ = c((A \ A′) ∪ (A′ \ A′′)) ∩ A′′ = (c(A \ A′) ∪ c(A′ \ A′′)) ∩ A′′ = ∅.
Furthermore, c(A′′)∩(A′\A′′) = ∅ and c(A′′) ⊆ c(A′) implies c(A′′)∩(A\A′) = ∅.
c(A′′)∩ (A \A′′) = [c(A′′)∩ (A′ \A′′)]∪ [c(A′′)∩ (A \A′)] = ∅. We conclude that
A′′ and A \A′′ are semi-separated. Repeating this argument a finite number of
times shows that we can “cut away” parts of A by means of semi-separations
until we are left with Q.

This is not true in more general neighborhood spaces. Consider the closure space
defined by 1-point crossover on strings of length 4 and consider the set A = {x =
0000, y = 0011, z = 1100}. We have the semi-separations {x}|{y}, {x}|{z},
{y}|{z}, {x, y}|{z}, {x, z}|{y}. Thus the connected components are the isolated
points. Nevertheless, {y, z}, {x} is not a semi-separation since x ∈ R(y, z).

In fact, recombination alone does not lead to connected spaces at all.

Theorem 1. The closure space (X, cR) is disconnected, i.e., X [x] = {x} for all
strings x and any string recombination operator R.

Proof. The search space is X =
∏n

i=1Ai, where Ai is the alphabet (or set
of alleles) for sequence position i, and consider an arbitrary point x∗ ∈ X .
Denote by X1 = {(x∗

1, y2, . . . , yn)|yi ∈ Ai, i ≥ 2} the “hyperplane” defined by
the first coordinate of x∗. Its complement is X ′

1 = X\X1 = {(y1, y2, . . . , yn)|y1 ∈
A1 \ {x∗

1}, yi ∈ Ai, i ≥ 2}. By construction, X1 ∩ X ′
1 = ∅, X1 ∪ X ′

1 = X ,
and cR(X1) ⊆ spanX1 = X1, cR(X ′

1) ⊆ spanX ′
1 = X ′

1. Thus X1∪̇X ′
1 is a
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semiseparation of X . It follows, that the connected component of x∗ is confined
to X1, in symbols X [x∗] ⊆ X1.

Now we define X2 = {(x∗
1, x

∗
2, y3, . . . , yn)|yi ∈ Ai, i ≥ 3} and X ′

2 = {(x∗
1, y2, y3,

. . . , yn)|y3 ∈ A2 \ {x∗
2}, yi ∈ Ai, i ≥ 3}. As above, we have X2 ∩ X ′

2 = ∅,
X2 ∪X ′

2 = X1, and cR(X2) ⊆ spanX2 = X2 and cR(X ′
2) ⊆ spanX ′

2 = X ′
2, i.e.,

X2∪̇X ′
2 is a semiseparation of X1 and hence X [x∗] ⊆ X2.

Repeating for Xk, the “hyperplane” defined by the first k coordinates of x∗,
and its complement X ′

k w.r.t. Xk−1, we obtain X [x∗] ⊆ Xk and finally X [x∗] ⊆
Xn = {x∗}.

In order to meaningfully study connectedness in the context of Genetic Algo-
rithms, we thus have consider connectedness for the closure operators that are
derived from the superposition of mutation and crossover. The following state-
ments may serve as examples.

Lemma 4. Let (X, cGA) be a closure space derived from point mutations and
and a string recombination operator R. Then spanA is connected for all A ⊆ X.
Furthermore, R(x, y) is connected if R is uniform crossover or 1-point crossover.

Proof. Let x, y ∈ spanA. We can convert x into y by exchanging one character
that differs between x and y after the other (say from left to right). The string
obtained in each step differs in a single position from the previous one and is
again contained in spanA. It follows that for every x, y ∈ spanA there is path
in spanA that leads with Hamming distance dH = 1 steps from x to y. Thus
spanA is connected in cGA because it is connected w.r.t. to mutation contribution
to cGA alone. For uniform crossover, R(x, y) = span{x, y}. In the case of 1-
point crossover we consider the recombinants in the order in which they arise
by crossover after position k. For k = 1, the two offsprings are either identical
to the two parents, or differ by letter in the first sequence position from one of
the parents, i.e., dH(x, x1) ≤ 1 and dH(y, y1) ≤ 1. The offsprings obtained from
crossover at position k and k + 1 can be divided into two pairs (xk, xk+1) and
(yk, yk+1) with dH(xk, xk+1) ≤ 1 and dH(yk, yk+1) ≤ 1. For crossover before
the end of the string we obtain dH(xn−1, y) ≤ 1 and dH(yn−1, x). Thus the
recombination products of x and y are located on two paths connecting x and y
in Hamming distance dH = 1 steps, see also [18].

3.2 Productive Connectedness

In [11] a less stringent definition of connectivity is introduced that is in particular
suitable for chemical reaction networks.

We say that A, B ∈ P(X) are productively separated if for all Z ⊆ A∪B holds
(1) c (Z ∩A) ∩B = ∅ and c (Z ∩B) ∩A = ∅
(2) c (Z) = c (Z ∩A) ∪ c (Z ∩B).
If (X, c) is an isotonic space, then A and B are semi-separated if condition (1)
holds for all Z ⊆ A ∪B.

It is now natural to call a set Z productively connected if it cannot be de-
composed into two non-empty subsets Z ′ and Z ′′ = Z \ Z ′ with Z ′ ∩ Z ′′ = ∅
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that are productively separated. In general, if Z is connected, then it is also
productively connected. In pretopological spaces (and in particular in digraphs),
semi-separation and productive separation coincide, hence Z is productively con-
nected if and only if it is connected in this case.

Lemma 5. Let (X, cR) be the closure space deriving from a proper recombina-
tion operator R. Then a 2-point set {x, y} ⊆ X is productively connected if and
only if dH(x, y) ≥ 2.

Proof. By (X3), cR(x) = {x} for all x ∈ X . Thus {x, y} is productively con-
nected if and only if c({x, y}) 
= {x, y}. By Lemma 2 this is the case if and only
if dH(x, y) ≥ 2.

If follows immediately, that any subset A ⊆ X is productively connected for any
GA-closure cGA that is derived from point mutation and a proper recombination
operator. This implies that the notion of productive connectedness is too weak
to be of much use for our purposes. We will therefore not consider productive
connectedness in the following.

3.3 Path-Connectedness

Path-connectedness is a widely used notion of connectedness that in general is
stronger than topological connectedness. From the topological point of view, a
path is a continuous function p : [0, 1] → X whose endpoints are p(0) and p(1).
(Here the interval [0, 1] is assumed to have the usual topology of real number.)
A set A is path-connected if for any two points x, y ∈ A, there is a path p with
p(0) = x and p(1) = y. A ⊂ X is path-connected if and only if for every pair of
points x, y ∈ A there is a path in A with endpoints x and y. One easily checks
that the concatenation of two paths with p1(1) = p2(0),

p1 • p2(t) =

{
p1(2t) t ∈ [0, 1/2]
p2(2t− 1) t ∈ [1/2, 1]

(10)

is again a path. Conversely, if the restriction of a path p to an interval [t′, t′′] ⊆
[0, 1] is again a path p′(t) = p(t(t′′ − t′) + t′). In the finite case, paths reduce to
simple combinatorial objects, as we shall see in the following two results.

Lemma 6. Let (X, c) be a neighborhood space and {x, y} ⊆ X a 2-point subset.
Then the following statements are equivalent:

1. y ∈ c({x}) or x ∈ c({y}).
2. {x, y} is path-connected.
3. {x, y} is connected.

Proof. (i⇒ii) Suppose y ∈ c({x}). Then p : [0, 1] → {x, y}, p(t) = x for
t ∈ [0, 1/2) and p(t) = y for t ∈ [1/2, 1] is continuous since p(c([0, 1/2))) =
p([0, 1/2]) = {x, y} ⊆ c(p([0, 1/2))) = c({x}) = {x, y} and p(c([1/2, 1])) =
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p([1/2, 1]) = {y} ⊆ c(p((1/2, 1])) = c({y}). Analogously, p : [0, 1] → {x, y},
p(t) = x for t ∈ [0, 1/2] and p(t) = y for t ∈ (1/2, 1] is continuous if x ∈ c({y}).
(ii⇒iii) The continuous image of a connected set is connected [40, Thm.5.4], thus
path-connectedness in general implies connectedness.
(iii⇒i) Since {x, y} is connected, {x}, {y} is not a semiseparation, i.e., x ∈ c({y})
or y ∈ c({x}).

Theorem 2. Let (X, c) be a finite neighborhood space. The there is a path from
x to y in A ⊆ X, x, y ∈ A, if and only if there is a sequence of points (x =
x0, x1, . . . , x�−1, x� = y), xi ∈ A, such that the two-point sets {xi−1, xi} are
connected.

Proof. Since X is finite, we only need to consider paths p along which the
function value p(t) changes a finite number of times. Thus we can decompose
p = p1•p2•· · ·•p� into sub-paths pi : [0, 1]→ {xi−1, xi} that connect subsequent
function values, i.e., p is path if and only if each pi is continuous. By Lemma 6
such a path with subsequent function values x0 = x, x1, . . . , x� exists if and only
if each subset {xi−1, xi} is connected.

With a finite neighborhood space (X, c) we can therefore associate a graph Γ
with vertex set X and (directed) edges (x, y) if y ∈ c({x}). If c is additive, than
Γ is an equivalent representation of (X, c). This correspondence between finite
pretopologies and finite digraphs is discussed e.g. in [41]. In general, we can
use the graph Γ to represent path-connectedness in (X, c). It follows directly
from theorem 2 that a set A ⊆ X is path-connected (w.r.t. c) if and only if the
subgraph of Γ induced by A is connected.

We remark that, for an GA-closure deriving from point mutations and a string
recombination operator, spanA is path-connected for all A. Furthermore,R(x, y)
is path-connected for 1-point crossover.

Theorem 1 implies that in string-recombination-only closures, there are no
connected two-point sets (since the connected components are the individual
points). It follows that path-connectedness is determined by the mutation com-
ponent of the GA.

4 Basins and Barriers

Consider a landscape (X, c, f), where f : X → R is an arbitrary function. We
define the level-sets

Xη = {x ∈ X |f(x) ≤ η} (11)

Let Pxy be the set of all paths from x to y. We say that x and y are mutually
accessible at level η, in symbols

x� η � y , (12)

if there is path p ∈ Pxy such that f(z) ≤ η for all z ∈ p, respectively. The
path-connected components of Xη are therefore

Pη[x] =
{
y ∈ V

∣∣y � η � x
}

(13)
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So-called cycles play a central role in the theory of simulated annealing, see
e.g. [42,43]. In the landscape setting “cycles” correspond to the connected com-
ponents of the level sets. In the literature on “disconnectivity graphs”, the cycles
are usually called “super-basins” [44]. More precisely, the cycle of x ∈ V at height
η, Cη[x], is the connected component of the level set {y ∈ V |f(y) ≤ η} that con-
tains x. In finite pretopological spaces, i.e., digraphs, we have P [x] = C[x]. In
finite neighborhood spaces (and in infinite pretopologies), however, we only have
P [x] ⊆ C[x].

For simplicity of the following discussion, let us assume that X is finite and
the landscape is non-degenerate (i.e., f(x) = f(y) implies x = y). In the case, we
may order the points in X by increasing cost, i.e., f(x(i)) < f(x(j)) iff i < j. Thus
x(1) is the unique global minimum. We say that a point x is a local minimum if
Cf(x)[x] = {x}. In the case of non-degenerate landscapes we would use a more
complicated definition. For example, we might say that x is a local optimum if
f(y) = f(x) for all y ∈ Cf(x)[x] : f(y) = f(x). The complications of degenerate
landscapes are discussed in detail in [5] for the case of landscapes on finite graphs.

00001111
11110000
11111111
10010000
10110000
00000111
00000011
00000001
10000000
00000000

A B CD A D B C

A|B

A|BC B|AC
D|ABC DA|BC DB|AC ACD|B
A|BC B|AC

A+B connected, C in c(A+B)

path connectedness connectedness

fi
tn

es
s

Fig. 1. Example of the lowest part of path-connectedness and connected-
ness barrier trees for a GA with point mutation and 1-point crossover. The
first difference is the simultaneous connection between the connected compo-
nents A, B, and C via the string 00000000. Just below the fitness level
of 00000000, we have A = {00001111, 00000111, 00000011, 00000001}, B =
{10000000, 10110000, 10010000, 11110000}, C = {11111111}. Note that A, B, and C
are connected by means of point mutations alone. 00000000 connects A and B to a
single connected component also via point mutations. Since 11111111 ∈ C is a recom-
bination product of 00001111 ∈ A and 11110000 ∈ B. Since at the level of 00000000,
A ∪ B is connected and C = {11111111} is contained in the closure c (A ∪ B), there is
no semi-separation in A ∪ B ∪ C, i.e., this set is connected. In the right-most column,
we show the complete list of all maximal semi-separations.

In the following we consider the relationship of the (path)connected compo-
nents of the level sets Xη and Xη′ in some more detail:

Lemma 7. Let A be a component of Xη and B a component of Xη′ with η < η′.
Then either A ⊆ B or A ∩B = ∅.
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Proof. Consider a point x ∈ A and let A′ be the component of Xη′ that contains
x. Since Xη ⊆ Xη′ , it follows that A ⊆ A′. Either A′ = B, in which case A ⊆ B,
or A′ ∩B = ∅, in which case A ∩B = ∅.

Note that this result holds for all notions of connectedness, including topological
connectedness, path-connectedness and productive connectedness.

Since f is non-degenerate, we may choose the difference between η and η′ so
that Xη′ = Xη ∪ {x∗}. The “new” point x∗ will in general interfere with the
connectedness structure of the “old” set Xη. It is important to notice that much
of the connectedness structure of of X ′

η is inherited from the old level set Xη.

Theorem 3. Suppose Xη′ and Xη, η′ > η are level sets of a fitness landscape
and Xη′ \ Xη = {x∗}. Let A′ be a connected component of Xη′ . Then either
x∗ /∈ A′, in which case A′ is a connected component of Xη, or x∗ /∈ A′, in which
case exactly one of the following three statements is true:

1. A′ = {x∗} is a connected component of Xη′ . In this case x∗ is a local mini-
mum.

2. There is a unique connected component A of Xη such that A′ = A ∪ {x∗}.
3. There are two or more connected components Ai, i = 1, 2, . . . , of Xη such

that A′ =
⋃

i Ai ∪ {x∗}. In this case we call x∗ a saddle point.

Proof. If Xη′ is connected, there is no component that does not contain x∗.
Otherwise there is a semi-separation, say Q′

1∪̇Q′′
1 , of Xη′ . Suppose Q′′

1 contains
x∗. Then Q′

1∪̇(Q′′
1 \ {x}) is also a semi-separation of Xη. If A′ ⊆ Q′

1 it follows
immediately that A′ is a connected component of Q′

1 and hence also of Xη. We
repeat the argument with Q′′

1 : Unless Q′′
1 is connected, there is a semi-separation

Q′
2∪̇Q′′

2 of Q′′
1 . By the same argument as above, A′ lies either in Q′

2 or in Q′′
2\{x∗},

or it contains x∗. In the first case, A′ is a connected component of Q′
2 and hence

also of Xη. After a finite number of steps we have either identified A′ as a
connected component of Xη, or A′ = Q′′

k is a connected set that contains x∗. In
this case A′ = Xη′ [x∗]

A connected component Ai of Xη is also connected in Xη′ . Thus either Ai ⊆
Xη[x∗] or Ai∩Xη[x∗] = ∅. It follows that Xη[x∗] =

⋃
i∈I Ai∪{x∗} for a suitable

finite index set I. The three cases in the statement of theorem correspond to
|I| = 0, |I| = 1, and |I| ≥ 2, respectively.

Note that this result is rather trivial in finite pretopologies (i.e., graphs). In
this case the connected component of x∗ in X ′

η is the union of all connected sets
Ai∪{x∗}, while lemma 3 guarantees that the remaining connected components of
Xη are also connected components of X ′

η. Unfortunately, this simple construction
does not work in non-additive spaces.

Algorithmically, it seems to be useful to keep track not only of the con-
nected components but also of the semi-separations between them. Since semi-
separations are inherited by subsets, we can, conversely argue, that a semi-
separation of U ∪ {x} is either of the form {x}|U or there is semi-separation
U = U ′|U ′′ such that U ′ ∪ {x}|U ′′ or U ′|U ′′ ∪ {x} is a semiseparation. Here U ,
U ′ and U ′′ are unions of connected components.
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Algorithm 1. Barrier Trees with arbitrary search operators
1: procedure barriers

2: Lact ← merge(L, x)
3: if Lact = ({x}) then
4: x is a local minimum
5: else if Lact = ({x} ∪ A) then
6: x belongs to basin A
7: else
8: x is a saddle point merge all A ∈ Lact\{x}

In practice, one first checks whether the new point {x} can be connected
to one or more connected components via mutation. If so, there is no semi-
separation between {x} and these components. For the remaining candidates, it
is sufficient to consider recombination. A candidate semi-separation of the form
U ′ ∪ {x}|U ′′ can be ruled out if there is either R(x, z)∩U ′′ 
= ∅ for some z ∈ U ′

or if there is y, z ∈ U ′′ such that x ∈ R(y, z). Note that, if U ′ ∪ {x}|U ′′ can be
ruled out as a semi-separation, then V ′ ∪ {x}|V ′′ with U ′ ⊆ V ′ and U ′′ ⊆ V ′′

is also not a semi-separation. Thus it is in particular sufficient to compute for
every connected component A, whether x is a recombinant of A, which other
connected components contain recombinants of x and members of A, and for
every pair of components A′ and A′′, whether x is recombinant of parents in
A′ and A′′, respectively. More precisely, U ′ ∪ {x}|U ′′ is a semiseparation, if and
only if (1) for all connected components A ⊆ U ′ and B ⊆ U ′′, A ∪ {x}|B is
a semiseparation and (2) {x}|B′ ∪ B′′ is semiseparation for all B′, B′′ ⊆ U ′′.
Two connected components of W belong to the same connected component of
W ∪ {x} if and only if there is not semi-separation left that separates them.

Algorithm 1 summarizes the basic logic of computing barrier trees. In al-
gorithm 2 we outline the steps that are necessary to update the collection L
of connected components when a single point x is added for the case of mu-
tation/recombination operators. Our approach relies on updating the list S of
maximal semiseparations. These steps are independent of the details of closure
function. In the case of recombination we use the R(A, B → C) to store the infor-
mation whether there are parents a ∈ A and b ∈ B that give rise to an offspring
in connected component C. If one were to consider search operators that con-
struct offsprings from more than two parents, these data-structures would have
to be modified accordingly. In Algorithm 3 we collect simplified presentations of
the higher-level procedure utilized in Algorithm 2.

In practice, we use a trie data structure to store the connected components s.
This allows a more efficient check of R(A, C → {x}). If the sum of the longest
prefix of x in A and the longest suffix of x in C has at least the length of x, then x
can be produced via recombination from members of the connected components
A and C.

Fig. 2 shows barrier trees for landscapes of quadratic spin glasses with randomly
generated interaction coefficients. At least for small instances, here 16 bits, exam-
ples of landscapes for which recombination changes the barrier structure are rare.
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Algorithm 2. Update Connected Components

� L List of connected components
� S List maximal semiseparations
� R 3-dimensional array R(A, B → C) ∀A, B, C ∈ L
� S(x) point mutation neighbors of x
� R(x, y) crossover neighbors of x and y

1: procedure merge

2: initialize L,S and R

� UpdateR
3: for all A, C ∈ L do
4: R(A, {x} → C) = 1 if ∃a ∈ A, c ∈ C : c ∈ R(a, x) ∨ c ∈ M(x)
5: R({x}, A → C) = R(A, {x} → C)
6: R(A,C → {x}) = 1 if ∃a ∈ A, c ∈ C : x ∈ R(a, c) ∨ x ∈ M(a) ∪M(b)

� New list of semiseparations
7: S ′ ← maxSemiSeparastions({x}|L)
8: for all (U ′|U ′′) ∈ S do
9: S ′ ← S ′ ∪ maxSemiSeparastions({x} ∪ U ′|U ′′)

10: S ′ ← S ′ ∪ maxSemiSeparastions(U ′|{x} ∪ U ′′)
11: Remove duplicates and non maximal elements from S ′

� Update L
12: Lact ← L
13: while ∃U ′|U ′′ ∈ Lact with Lact ∩ (U ′ ∪U ′′)∧U ′ ∩Lact �= ∅ ∧U ′′ ∩Lact �= ∅ do
14: if {x} ∈ U ′ then
15: Lact ← U ′

16: else
17: Lact ← U ′′

18: X
⋃

A∈Lact

A

� Update R
19: R(X,B → C) ←

∨
A∈Lact

R(A,B → C)

20: R(A,B → X) ←
∨

C∈Lact

R(A,B → C)

21: for all A ∈ Lact do
22: for all ( doB, C ∈ L)
23: remove R(A,B → C), R(B, A → C), R(B,C → A)

� Update S
24: for all U ′|U ′′ ∈ S ′ do
25: S ← S ∪ U ′|U ′′ unless ∃A ∈ U ′ ∩ Lact ∧ ∃B ∈ U ′′ ∩ Lact

26: L ← (L\Lact) ∪ X
return Lact

Further computational studies will be necessary see if this finding is related to the
fact that highly correlated landscapes are usually efficiently searchable by means
of hill-climbing along.
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Algorithm 3. Update Connected Components

1: procedure removeSubSets

2: for all U ′|U ′′ do
3: if ∃V ′, V ′′ ∈ S ′ with V ′ ⊂ U ′ ∧ V ′′ ⊂ U ′′ then
4: remove V ′|V ′′ from S ′

5: if U ′ ⊂ V ′ ∧ U ′′ ⊂ V ′′ then
6: ignore U ′|U ′′

7: procedure isSemiSeparastion

U ′|U ′′ is a semiseparation if
∀A, B ∈ U ′ ∧ C ∈ U ′′ : R(A, B → C) = 0
and ∀A,B ∈ U ′′ ∧ C ∈ U ′ : R(A,B → C) = 0.

8: function maxSemiSeparastions(U ′|U ′′)
9: if U ′|U ′′ is a semiseparation then

10: return(U ′|U ′′)
11: else
12: subsequently delete each element from U ′ and U ′′ and call
13: maxSemiSeparastions if this candidate is not yet checked.

5 Discussion

In this contribution we have extended the notion of barrier trees to search spaces
of arbitrary structure. Two complications arise beyond the realm of finite graphs:
(1) There are several natural notions of connectedness, each of which appears
as the most natural in different applications. For example, productive connect-
edness was introduced to properly describe chemical reaction networks, while
topological connectedness appears as the natural framework to study Genetic
Algorithms. (2) The non-additivity of the close function in non-graphical search
spaces poses substantial algorithmic challenges in actually computing barrier
trees.

In this contribution we have briefly described a prototypical approach that
is, however, not practical for large problems since its runtime and memory re-
quirements are quadratic in the size of the (part of the) search space under
investigation. More efficient algorithms, or at least efficient heuristics to check
connectedness will be required before this approach can be applied to interest-
ingly large optimization problems.

Interestingly, path-connectedness, which is more stringent than topological
connectedness, turns out to be equivalent to “connectedness via mutations only”
in the context of genetic algorithms. This results provides an a posteriori jus-
tification of the approach by Halam and Prügel-Bennet to study the dynamics
of GAs by mapping the populations onto a barrier tree based on Hamming-
neighborhoods. It also suggests to use a comparison of path-connectedness and
topological connectedness trees to study the effects of crossover on a given land-
scape. By construction, the topological connectedness barrier tree is a homeo-
morphic image of the path-connectedness tree (since connected components are
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Fig. 2. Two Examples (rows) of barrier trees for quadratic spin glasses of size 16
without and with 1-point recombination (columns). In the first example (upper row)
local minimum 13 is lost in the case of recombination because it can be produced
from members of local minimum 1. In the second example, local minimum 13 can be
connected to local minimum 3 at a lower energy level in the case of recombination. In
both cases the remaining part of the landscape is unaffected.

unions of path-connected components). It follows that the effect of recombina-
tion appears as the collapsing of nodes and consequently as the reduction of
of the number of local minima and their separating barrier heights. Intuitively,
a recombination has big impact if many nodes are collapsed when going from
path-connectedness to topological connectedness; conversely, recombination is
not helpful when the two trees are (almost) the same.
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